Abstract
This article presents thefindings ofexperimental andfinite element simulation warp direction uniaxial tensile testing ofplain 1/1, 2/2 twill and 8 ends satin woven fabrics with respect to a wovenfabric model developed in IGES using
UniverFilter. Woven fabrics have been specifically configured as a balanced weave thereby allowing systematic investigation of the effect of uniaxial tensile stress on the weave. Static automatic incrementation of large
representative volume elements has enabled characterisation ofthe response oftwo-dimensional woven fabrics under uniaxial tensile stress with respect to hyperelastic and elastic-plastic material properties. Plain 1/1 and 8 ends
satin woven fabrics were well-described by the hyperelastic model and the elastic-plastic model predicted extended strain percentages. The modelling indicates that satin woven fabric possesses the lowest strain distribution and compression stress in the unloaded weft direction compared to plain and twill woven fabrics.
Metadata
Item Type: | Article |
---|---|
Creators: | Creators Email / ID Num. Yahya, Mohamad Faizul faizulmy@gmail.com Chen, Xi UNSPECIFIED |
Subjects: | T Technology > TA Engineering. Civil engineering > Engineering mathematics. Engineering analysis > Finite element method T Technology > TA Engineering. Civil engineering > Stress waves. Deformation of materials under stress T Technology > TS Manufactures > Weaving T Technology > TS Manufactures > Textile fabrics |
Divisions: | Universiti Teknologi MARA, Shah Alam > Research Management Centre (RMC) |
Journal or Publication Title: | Scientific Research Journal |
UiTM Journal Collections: | Listed > Scientific Research Journal (SRJ) |
ISSN: | 1675-7009 |
Volume: | 7 |
Number: | 2 |
Page Range: | pp. 31-55 |
Keywords: | Finite element analysis, CAD, uniaxial tensile, stress-strain |
Date: | 2010 |
URI: | https://ir.uitm.edu.my/id/eprint/12937 |
Download
AJ_MOHAMAD FAIZUL YAHYA SRJ 10 1.pdf
Download (2MB)