Abstract
Wind-generated random wave loads are the dominant loads to consider for maintaining the reliability of fixed offshore structures. Based on probabilistic techniques, the inherent randomness of the wave loading can be used to predict extreme offshore structural response, which is Gaussian in nature. However, researchers have found that the hydrodynamic component and structural dynamics substantially impact the frequency spectrum, leading to a non-Gaussian stochastic offshore structural response. A finite-memory non-linear system (FMNSNL) has been proven to be an efficient approach to evaluate the non-Gaussian stochastic offshore structural response compared to the conventional method, Monte Carlo time simulation. However, the analysis has been conducted based on short-term distribution only. The most satisfactory analysis is based on long-term distribution. Hence, further investigation in this paper will evaluate the long-term probability distribution of extreme offshore structural responses. As a result, a 100-year extreme offshore structural response prediction achieves 80% to 96% accuracy compared to the Monte Carlo time simulation. The probability distribution has been evaluated using the Gumbel distribution function throughout this investigation. Still, there is a little deviation at the tail end of the distribution between the simulated response values and the fitted line. A different distribution function, such as the Generalised Extreme Value (GEV) distribution, is advised for future work.
Metadata
Item Type: | Article |
---|---|
Creators: | Creators Email / ID Num. Mukhlas, Nurul ‘Azizah nurulazizah@utm.my Mohd Zaki, Noor Irza UNSPECIFIED Abu Husain, Mohd Khairi UNSPECIFIED Syed Ahmad, Sayyid Zainal Abidin UNSPECIFIED Ng, Chiew Teng UNSPECIFIED Ahmad Shah, Mohamad Shazwan UNSPECIFIED Umar, Sarehati UNSPECIFIED Md Noor, Norhazilan UNSPECIFIED |
Subjects: | Q Science > QC Physics > Mathematical physics > Finite element method T Technology > TA Engineering. Civil engineering > Dynamic loading conditions. Structural dynamics. Vibrations |
Divisions: | Universiti Teknologi MARA, Shah Alam > College of Engineering |
Journal or Publication Title: | Journal of Sustainable Civil Engineering & Technology (JSCET) |
UiTM Journal Collections: | UiTM Journal > Journal of Sustainable Civil Engineering and Technology (JSCET) |
ISSN: | 2948-4294 |
Volume: | 2 |
Number: | 2 |
Page Range: | pp. 14-27 |
Keywords: | Offshore structure, non-linear wave theory, finite-memory non-linear system, extreme response |
Date: | September 2023 |
URI: | https://ir.uitm.edu.my/id/eprint/85639 |