Abstract
Pure and transition metal ion (Mn) doped Sn02 nanoparticles were synthesized using a simple mechanochemical method. Transition metal ions (Mn) concentration of 0.00, 0.02, 0.04, 0.06, 0.08, 0.10 were doped in order to study the influence optical properties. The optical properties of the samples were analyzed using X-ray diffraction (XRD), ultraviolet visible spectroscopy (UV-VIS), and photoluminescence (PL) techniques. The Sn02 crystallites were found to exhibit tetragonal rutile structure with lattice parameters, revealing that the metal ions get substituted in the Sn02 lattice. It is observed that the peak position ( 1 1 0 ) get shifted to higher angles by increasing the dopant concentration. Hence the lattice parameters (a and c) and the cell volume get decreased due to the ionic radius of Mn is lower than the ionic radius of Sn. A significant blue shift in the UV absorbing band edge was observed with the increase in the amount of the Mn and Co contents. The photoluminescence spectra are measured at room temperature as a function of different Mn2 concentration, respectively. The luminescence processes are associated with oxygen vacancies in the host and related with the recombination of electrons in singly occupied oxygen vacancies with photoexcited holes in the valence band.
Metadata
Item Type: | Student Project |
---|---|
Creators: | Creators Email / ID Num. Mod Arifin, Fathiah UNSPECIFIED |
Contributors: | Contribution Name Email / ID Num. Thesis advisor Zakaria, Azlan UNSPECIFIED |
Subjects: | Q Science > QC Physics > Descriptive and experimental mechanics Q Science > QC Physics > Electricity and magnetism > Electricity > Electric current (General) > Electric conductivity > Semiconductor physics |
Divisions: | Universiti Teknologi MARA, Shah Alam > Faculty of Applied Sciences |
Programme: | Bachelor of Science (Hons.) Industrial Physics |
Keywords: | Mechanochemical, Optical, Photoluminescence (PL) |
Date: | 2011 |
URI: | https://ir.uitm.edu.my/id/eprint/46829 |
Download
46829.pdf
Download (150kB)