Abstract
The consistent surface finishes in polishing remain a significant challenge. Variations in machining parameters often lead to inconsistent results, negatively impacting both the appearance and functionality of polished components. Despite advances in CNC technology, the selection of optimal machining parameters remains complex due to the interplay of multiple factors. This study addresses this gap by developing a prediction model to systematically determine appropriate machining parameters such as cutting speed (vc), feed rate (vf), and depth of cut (doc). Surface roughness (Ra) was used as the key metric to evaluate the surface quality of CNC end-mill products. The above machining parameters were varied according to a 33 -extended full factorial design, resulting in 108 experimental output targets of Ra. These outputs were then utilized to train an ANN prediction model based on a feed-forward backpropagation (FFBP) algorithm. The results demonstrated a strong correlation coefficient (R = 0.992) across all data sets. In the regression plot, the predicted values closely matched the actual values, indicating a high level of accuracy in the regression model. Furthermore, error evaluation using normalized root mean square error (NRMSE) revealed a low error rate of 3.79%, which is considered highly acceptable, particularly in the context of polishing.
Metadata
| Item Type: | Article |
|---|---|
| Creators: | Creators Email / ID Num. Armansyah armansyah@upnvj.ac.id Puji, Muhammad Nurul UNSPECIFIED Mardhani, Muhammad Destri UNSPECIFIED Suartana, I Putu Eka UNSPECIFIED Desmawati UNSPECIFIED Ferdyanto UNSPECIFIED Kusumah, Muhammad Afiff UNSPECIFIED Yafi, Muhammad Umar UNSPECIFIED Saedon, Juri UNSPECIFIED |
| Subjects: | T Technology > TJ Mechanical engineering and machinery > Machine shops and machine shop practice > Machine tools and machining |
| Divisions: | Universiti Teknologi MARA, Shah Alam > College of Engineering |
| Journal or Publication Title: | Journal of Mechanical Engineering (JMechE) |
| UiTM Journal Collections: | UiTM Journals > Journal of Mechanical Engineering (JMechE) |
| ISSN: | e-ISSN: 2550-164X |
| Volume: | 22 |
| Number: | 2 |
| Page Range: | pp. 15-30 |
| Keywords: | CNC machining, surface roughness, extended full factorial design, artificial neural network (ANN), normalized root mean squared error (NRMSE) |
| Date: | May 2025 |
| URI: | https://ir.uitm.edu.my/id/eprint/116639 |
