Abstract
Feature selection is a vital preprocessing step for identifying the most informative features in complex datasets, enhancing the efficiency and accuracy of machine learning models. Its applications extend across various domains, including big data analytics, finance, chemometrics, medical diagnostics, biological research, intrusion detection systems, and renewable energy solutions. In medical contexts, feature selection serves a dual purpose: it reduces dimensionality while simultaneously improving the comprehension of disease etiology. This study delves into key variable selection methods—specifically Recursive Feature Elimination (RFE), Principal Component Analysis (PCA) and Least Absolute Shrinkage and Selection Operator (LASSO). We evaluate the interaction of these methods with Support Vector Machines (SVM), Logistic Regression (LR), and eXtreme Gradient Boosting (XGBoost) for COVID-19 prediction. Key performance metrics, including F1-score, precision, recall, and accuracy. LASSO with SVM performed the best overall in terms of accuracy = 0.7679 and precision=0.8236, but PCA outperformed RFE with XGBoost, underscoring the importance of matching feature selection methods to model types. In addition, we employ a deep learning Feature Selection method based on Extreme Learning Machine (FSELM) and compare its effectiveness against the established feature selection techniques. Our work reveals that Lactate Dehydrogenase (LDH) is the most relevant feature while predicting COVID-19. This research aims to provide insights into the optimal integration of feature selection techniques with advanced machine learning models for accurate prediction of COVID-19 virus.
Metadata
Item Type: | Article |
---|---|
Creators: | Creators Email / ID Num. Mojahid, Hafiza Zoya 2022547787@student.uitm.edu.my Mohamad Zain, Jasni jasni@.uitm.edu.my Yusoff, Marina marina998@uitm.edu.my Basit, Abdul 2021691374@student.uitm.edu.my Jumaat, Abdul Kadir abdulkadir@tmsk.uitm.edu.my Ali, Mushtaq mushtaq.ali@riphah.edu.pk |
Subjects: | Q Science > Q Science (General) > Machine learning |
Divisions: | Universiti Teknologi MARA, Shah Alam > College of Computing, Informatics and Mathematics |
Journal or Publication Title: | Malaysian Journal of Computing (MJoC) |
UiTM Journal Collections: | Listed > Malaysian Journal of Computing (MJoC) |
ISSN: | 2600-8238 |
Volume: | 10 |
Number: | 1 |
Page Range: | pp. 2135-2158 |
Keywords: | COVID-19, Deep Learning, Extreme Learning Machine, Feature Selection, Machine Learning Models, Prediction |
Date: | April 2025 |
URI: | https://ir.uitm.edu.my/id/eprint/112922 |