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ABSTRACT 

Feature selection is a vital preprocessing step for identifying the most informative features in 
complex datasets, enhancing the efficiency and accuracy of machine learning models. Its 
applications extend across various domains, including big data analytics, finance, 
chemometrics, medical diagnostics, biological research, intrusion detection systems, and 
renewable energy solutions. In medical contexts, feature selection serves a dual purpose: it 
reduces dimensionality while simultaneously improving the comprehension of disease etiology. 
This study delves into key variable selection methods—specifically Recursive Feature 
Elimination (RFE), Principal Component Analysis (PCA) and Least Absolute Shrinkage and 
Selection Operator (LASSO). We evaluate the interaction of these methods with Support Vector 
Machines (SVM), Logistic Regression (LR), and eXtreme Gradient Boosting (XGBoost) for 
COVID-19 prediction. Key performance metrics, including F1-score, precision, recall, and 
accuracy. LASSO with SVM performed the best overall in terms of accuracy = 0.7679 and 
precision=0.8236, but PCA outperformed RFE with XGBoost, underscoring the importance of 
matching feature selection methods to model types. In addition, we employ a deep learning 
Feature Selection method based on Extreme Learning Machine (FSELM) and compare its 
effectiveness against the established feature selection techniques. Our work reveals that 
Lactate Dehydrogenase (LDH) is the most relevant feature while predicting COVID-19. This 
research aims to provide insights into the optimal integration of feature selection techniques 
with advanced machine learning models for accurate prediction of COVID-19 virus. 

Keywords: COVID-19, Deep Learning, Extreme Learning Machine, Feature Selection, 
Machine Learning Models, Prediction. 
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1. Introduction 

While specific curative treatments for COVID-19 remain elusive, management strategies such 
as antivirals, vaccines, and supportive care have significantly mitigated its impact as of January 
2024. Mild cases often resolve with home-based care, including adequate rest, hydration, and 
over-the-counter medications to relieve symptoms such as fever and pain. Severe cases, 
however, may require hospitalization and more intensive interventions, such as oxygen therapy, 
antiviral medications, or mechanical ventilation. Early detection through timely screening 
remains critical to ensuring appropriate treatment and reducing the risk of severe outcomes. 
The timely and accurate diagnosis of COVID-19 is essential for controlling its spread and 
mitigating transmission (Saberi-Movahed et al., 2022). While Reverse Transcription 
Polymerase Chain Reaction (RT-PCR) is recognized by the World Health Organization (WHO) 
as the gold standard for COVID-19 testing, challenges such as long wait times, limited 
availability, and accuracy issues (with 15-20% false negatives) highlight the need for faster, 
more affordable, and accessible diagnostic alternatives (Li et al., 2020; Brinati et al., 2020; 
Rikan et al., 2021; Alsharif & Qurashi, 2020; Basit et al., 2022). 

Expert knowledge is crucial for accurately diagnosing COVID-19 infections. However, 
the use of machine learning, which learns from patient data and healthcare records, can 
significantly enhance the speed, accuracy, and outcomes for patients by reducing errors (Basit 
et al., 2024). In Machine Learning (ML), supervised learning is a dynamic field that involves 
training predictive models using labeled datasets with known target outputs. The challenges in 
supervised learning arise in regression, where the goal is to predict continuous outputs, and in 
classification, where the aim is to predict discrete categories. Classification, a key method in 
data mining, efficiently categorizes data into distinct classes. This study utilizes machine 
learning, primarily classification methods such as Support Vector Machines (SVM), Logistic 
Regression (LR), and eXtreme Gradient Boosting (XGBoost) to predict COVID-19 outcomes. 
To improve accuracy and efficiency, relevant features were selected using various methods 
such as filter, wrapper, and embedding which are essential for processing large health datasets 
and enhancing disease diagnosis. Table 1 outlines the important parameters for evaluating 
different feature selection methods. 
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outputs, and in classification, where the aim is to predict discrete categories. Classification, a 
key method in data mining, efficiently categorizes data into distinct classes.  

This study utilizes machine learning, primarily classification methods such as Support 
Vector Machines (SVM), Logistic Regression (LR), and eXtreme Gradient Boosting 
(XGBoost) to predict COVID-19 outcomes. To improve accuracy and efficiency, relevant 
features were selected using various methods such as filter, wrapper, and embedding which are 
essential for processing large health datasets and enhancing disease diagnosis. Table 1 outlines 
the important parameters for evaluating different feature selection methods. 

 
Table 1. Outline of Important Parameters for Feature Selection. 

 

Parameters Filter Wrapper Embedded 
Procedure 
Scrutiny 

Statistical test. Cross-validation. Cross-validation. 

Benchmarks Feature subset relevance. Feature subset usefulness. Feature subset 
usefulness. 

Search By traversing the features 
sequentially, either 
through nested feature 
subsets or by individually 
ranking features. 

Explore every conceivable 
feature subset. 

The search process is 
governed by the 
learning algorithm. 

Findings -Robust against 
overfitting. 
-There exists a potential 
for failure in selecting 
pertinent features. 

-Susceptible to overfitting. 
 
-Identifies the most valuable 
features but entails 
substantial time complexity 

-Exhibits reduced 
susceptibility to 
overfitting. 
-Demonstrates 
comparatively lower 
time complexity. 

Filter approaches examine the data directly (independently of the model) to identify 
significant features. These methods operate in two steps: (1) ranking features according to 
metrics such as distance or correlation and (2) selecting the top-ranked features while 
discarding the rest. This approach reduces model complexity by eliminating irrelevant features 
(Akhiat et al., 2018). In this study, we employ Principal Component Analysis (PCA) as a Filter 
approach. Wrappers, unlike Filter techniques, create and analyse models for all conceivable 
feature combinations. They select the optimum combination based on its ability to predict 
outcomes while taking into account feature interactions. Wrappers tend to be less in accurate 
than Filters, and we employ Recursive Feature Elimination (RFE) as our Wrapper approach in 
this study. Embedded methods combine Filtering and Wrapping procedures. As the model is 
being trained, they concurrently select features and improves it (Akhiat et al., 2020). This 
makes them faster than Wrappers and LASSO (Least Absolute Shrinkage and Selection 
Operator) for embedded techniques (Akhiat et al., 2019; Bouchlaghem et al., 2022; Dede et al., 
2023; Jain and Xu, 2023). Blood testing, according to studies, can help detect COVID-19 
outcomes. Specific cell types such as monocytes, basophils, lymphocytes, and neutrophils may 
provide information on a patient's progression. This is significant because early discovery can 
lead to more effective therapy, particularly for those at risk of serious health conditions (Ferrari 
et al., 2020). Predicting the impact of COVID-19 on patients can be made more accurate by 
using blood testing. Figure 1 highlights the function of each of these methods. 
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Figure 1. Workflow of Filter, Wrapper and Embedded Method. 
 
In consideration of the aforementioned constraints and requirements, the primary 

objectives of this study are outlined below: 

1. Examine and contrast machine learning models (SVM, LR, XGBoost) and feature 
selection techniques (RFE, LASSO, PCA) for COVID-19 prediction. We want to 
investigate how these strategies combine to increase accuracy in output results. 

2. Investigate Deep Learning (DL) model for Feature Selection such as Extreme 
Learning Machines (FSELM). This approach will be compared to established 
methods (RFE, LASSO, and PCA) to evaluate its impact on improving model 
prediction of COVID-19. We believe that this will uncover complicated 
relationships in the data, allowing for higher accuracy in output results. 

The structure of this paper as follows: The Section 1 begins with the Introduction. The 
Section 2 discusses the literature. The Section 3 covers the conceptual design, resources, and 
procedures employed for this research. Section 4 provides the results. Section 5 presents a 
debate and prospective study guidelines. Lastly, Section 6 discusses the conclusions. 

 
3. Literature Review 

This section will provide an outline of machine learning models used to diagnose COVID-19 
utilizing regular laboratory and/or clinical data. The most widely used models for predictions 
were focused on RF (Sharma et al., 2021; Aria et al., 2021), Extreme Gradient Boosting 
(XGBooost), LR (Jawa, 2022), SVM (Mojahid et al., 2024) and ANN (Azeem et al., 2023). 
Additionally, diverse feature variety techniques combined with ML models using routine blood 
tests exhibit notable potential in identifying key features influencing the COVID-19's severity 
and fatality rate. 

For instance, Wang et al. (2020) proposed a prediction model to predict three clinical 
outcomes among COVID-19 patients at NYU Langone Health Center (NYULH): ventilation, 
admission to the intensive care unit, or death. Both XGBoost and Logistic Regression (LR), 
using the Least Absolute Shrinkage and Selection Operator (LASSO) for feature selection, were 
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assessed in this study. The XGBoost model achieved significantly better outcomes than LR 
when trained on a sample of 3,740 patients. Parchure et al. (2020) established an Random Forest 
(RF) model for predicting near-term death (20-48 hours) utilizing time-series inpatient data 
gathered from Electronic Health Records (EHRs). Data from 567 infected patients who were 
hospitalized to a New York hospital were included in their study. Instead of using the traditional 
method that depends on clinical symptoms, Banerjee et al. (2020) used complete blood counts 
as a discriminative tool for identifying COVID-19 infected patients. According to the study, 
individuals with positive COVID-19 have decreased leukocyte, platelet, and lymphocyte 
counts.  

Using normal blood indicators, Brinati et al. (2020) were able to detect COVID-19 
cases among 279 COVID-19-infected cases. Using ML techniques, these researchers were able 
to identify COVID-19 cases with good recall (92%–95%) and accuracy (82%–86%). Vaid et 
al. (2020) used the XGBoost classification model to predict serious incidents and in-hospital 
mortality at several time frames (three, five, seven, and ten days, respectively) following 
admission. The model was created and evaluated on EHRs from infected patients hospitalized 
at the Mount Sinai Health System in New York City, with COVID-19 virus. A study by Thell 
et al. (2021) found that the XGBoost model performed admirably in predicting critical events 
and mortality. The researchers examined the use of common blood tests and their occurrence 
rates to distinguish between patients infected with SARS-CoV-2 and those who were not. 
Researchers investigated the possibility of using models based on machine learning to evaluate 
common blood tests for the purpose of detecting COVID-19 cases, building on the findings of 
Yang et al. (2020). This strategy could be especially useful in areas where traditional diagnostic 
techniques, such as the reverse transcriptase assay, are not readily available.  

The study also looked into how ML models might be utilized to predict the severity 
and mortality risks related to the virus. This body of research underscores the significance of 
ML applications in harnessing information gleaned from routine blood tests for comprehensive 
virus assessment, particularly in scenarios where traditional screening methods may be limited 
or unavailable. Based on the significance and classification of XGBoost features, Linden et al. 
(2021) proposed that higher lactate dehydrogenase (LDH), hyperglycemia, acute renal injury, 
age, C-reactive protein (CRP), and anion gap were important factors in predicting serious 
incidents and death in infection cases. Rahman et al. (2021) predicted the likelihood of COVID-
19 infections using easily accessible parameters from complete blood counts (CBCs). An 
external dataset was used to validate the classification model, which showed strong predicted 
accuracy. Similarly, Chowdhury et al. (2021) investigated response results, clinical 
representations, and demographic characteristics in an effort to identify important medical and 
demographic variables. To predict patient death, multiple variables were taken into attention,  

Such as age along with data gathered upon hospitalization, such as neutrophils, 
lymphocytes, hs-CRP, and LDH. The achievement was achieved by employing a multi-tree 
XGBoost model. Moreover, a nomogram was developed by the researchers to predict the death 
risk associated with verified COVID-19 cases. First, a combined score that was correlated with 
the likelihood of the patient's mortality was calculated. Individuals with infection were then 
separated into three risk categories: high, moderate, and low. Impressive Area Under the Curve 
(AUC) values of 0.961 and 0.991 were obtained by the training and validation study nomogram, 
respectively. 

In order to predict death prospects in COVID-19 infected cases, Zhu et al. (2020) used 
an approach of 6-layer deep neural network to classify the top five factors from 56 features 
studied at entrance. For the purpose of training and testing the model, the dataset they used 
included information from 181 instances that were gathered from a prominent medical care in 
Wuhan, China.  De Terwangne et al. (2020) demonstrated the prognostic power of a Bayesian 
network-based model using five critical clinical parameters (age, acute kidney damage, 
lymphocytes, activated partial thromboplastin time, and LDH) for COVID-19 severity 
categorization. Aladağ and Atabey (2020) used coagulopathy indicators to attempt to predict 
the likelihood of death in sternly infected cases. Zhang et al. (2017) examined the independent 
association among the severity of COVID-19 infection and the starting point stages of four 
medical criteria: D-dimer, LDH, Computed Tomography score (CT), and Neutrophil-to-
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Lymphocyte Ratio (NLR) upon entry. They accomplished this by using logistic regression. 
Notably, in high-risk populations, an increased level of NLR and LDH showed effectiveness in 
identifying confirmed COVID-19 cases. Moreover, the sensitivity of the model was improved 
by the combination of NLR and LDH. In a retrospective research, Huang et al. (2020) utilized 
nine independent health-related risk indicators at patient entrance to calculate risk ratings and 
categorize the 336 confirmed COVID-19 cases and the 139 controls who were negative. 

Wang et al. (2020) developed two predictive models that used a mix of laboratory and 
healthcare information to predict death caused by COVID-19 virus after hospitalization. The 
laboratory structure demonstrated superior discriminative power when validated using a 
separate cohort dataset, accomplishing an AUC of 0.88. Features included in the model 
comprised Aspartate Aminotransferase (AST), lymphocyte and neutrophil count, age, hs-CRP, 
Peripheral Capillary Oxygen Satuation (SpO2), D-dimer, and Glomerular Filtration Rate 
(GFR). In order to determine relevant features, such as GFR, White Blood Cell (WBC) count, 
myoglobin, neutrophil count, and age, Zhang et al. (2020) utilized univariate and multivariate 
logistic regression analyses. These characteristics were then used to progress a grading system 
that predicted the severity of COVID-19 cases. The model's effectiveness was confirmed by 
validation on outside data, which included 22 infected cases. In order to create a fatality 
prognosis model, Aznar-Gimeno et al. (2021) carefully selected age, lymphocyte count, LDH, 
and SpO2, as a subgroup of important characteristics. Following validation on a separate cohort, 
an excellent AUC of 0.98 was obtained. The authors also presented a nomogram to calculate 
the death likelihood utilizing their well-established prediction system.  

Bolourani et al. (2021) developed an XGBoost model that makes use of important 
variables such as age, respiratory rate, serum lactate, emergency severity index (ESI) level, 
demographics, and the sort of oxygen delivery system utilized in the emergency room. The 
XGBoost model outperformed other models in predicting respiratory breakdown for confirmed 
COVID-19 patients within 48 hours of admission, whose mean accuracy was 0.919 and its 
AUC was 0.77. In order to predict COVID-19 mortality, Yan et al. (2020) argued for an 
understandable single-tree XGBoost model that made use of the three most relevant 
characteristics such as LDH, lymphocytes, and hs-CRP. The early potential for prediction of 
this model were highlighted by its staggering 94% accuracy within three days preceding the 
individual's outcomes. In light of current works employing ML models to analyse blood 
biomarkers for predicting COVID-19 outcomes and severity, it is evident that the existing 
models, while informative, fall short of achieving the requisite accuracy and precision. 

The literature review showcases various models leveraging blood biomarkers and 
classification models, yet there remains a gap in establishing a clinically reliable predictive 
biomarker for COVID-19 outcomes. Our research, as outlined in the abstract, aims to bridge 
existing gaps in the literature by employing ensemble techniques and ML models for feature 
selection. We focus on enhancing the performance of the experiments through the spotlight on 
hybrid and ensemble approaches. By delving into high-dimensional blood biomarker-based 
COVID-19 clinical dataset, our study aims to uncover the most vital subcategory of blood 
biomarkers capable of precisely predicting COVID-19 outcomes, particularly mortality, with 
enhanced accuracy and precision. This approach is innovative in its comprehensive exploration 
of feature selection methodologies and classification models, bridging the existing gaps in the 
literature and providing a more robust framework for preliminary detection of COVID-19 
outcomes upon hospital admission. Through meticulous testing and validation, our research 
aims to contribute significantly to the field by offering a more reliable and accurate predictive 
model, thereby aiding in the understanding of the relative hazard of death for COVID-19 virus 
entities during the early stages of their hospitalization. 

 
4. Methods 

The study opted a publicly available dataset from a local hospital in Italy. Hence, formal 
informed permission was not required, and no human subjects were engaged. Table 2 provides 
the detail description for all variables of the dataset. 
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Table 2. Features of San Raffaele Health Dataset. 
 

Features Type 
Gender Categorical 
Age Numerical (discrete) 
Leukocytes Numerical (continuous) 
Platelets Numerical (continuous) 
C-reactive Protein (CRP) Numerical (continuous) 
Transaminases (AST) Numerical (continuous) 
Transaminases (ALT) Numerical (continuous) 
Transaminases (ALP) Numerical (continuous) 
Gamma Glutamil Transferasi (GGT) Numerical (continuous) 
Lactate dehydrogenase (LDH) Numerical (continuous) 
Neutrophils Numerical (continuous) 
Lymphocytes Numerical (continuous) 
Monocytes Numerical (continuous) 
Eosinophils Numerical (continuous) 
Basophils Numerical (continuous) 
Swab Categorical 

Following data collection and preparation, three unique types of feature selection 
approaches were progressively applied: Filter (PCA), Wrapper (RFE), and embedded method 
as LASSO. This procedure entailed identifying the most pertinent subset of features, which was 
critical for subsequent model development. Following which, three different ML procedures 
were used to train models on the modified feature sets. The efficiency of the model and feature 
selection was then evaluated, using a variety of assessment measures such as accuracy, 
precision, recall and F1-score that comprehensively assess model performance. 

4.1 Data Description 

For this study, a publicly accessible dataset was utilized from the IRCCS: Scientific Institute 
for Research, Hospitalization and Healthcare (Kaggle, 2020), comprises records from 279 
patients hospitalized to San Raffaele Hospital in Milan, Italy, across late February 2020 to mid-
March 2020. The dataset has 16 columns, namely: GENDER, AGE, Monocytes, WBC, AST, 
Platelets, Lymphocytes, CRP, Eosinophils, Basophils, ALT, ALP, GGT, Neutrophils, LDH, 
and SWAB. Of the 279 patients, 177 tested positive for COVID-19, with the “Swab” variable 
being the target variable denoting the diagnosis. The negative COVID-19 test results occurred 
102 times (37%), while the positive COVID-19 test results occurred 177 times (63%). The 
dataset contains missing values, especially in columns Neutrophils, Lymphocytes, Monocytes, 
Eosinophils, Basophils, and several others. The study has been separated into three broad 
phases illustrated as shown in Figure 2. 
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Figure 2. Phases of Research Methodology. 

4.2  Missing Values 

Before applying the imputation method, a Missing Completely at Random (MCAR) test was 
conducted to determine whether the missing data occurred randomly or followed a specific 
pattern. ‘Chi-square’: 0.0 indicates that the calculated chi-square statistic is 0.0. This indicates 
that the occurrence of missing data is unrelated to the observed values. Secondly, ‘Degrees of 
freedom’ in this test are ‘1’ because there is one degree of freedom for a 2x2 contingency table. 
Further, the p-value is 1.0, indicating that under the null hypothesis (the information is missing 
completely at random), there is no evidence to discard the null hypothesis. This suggests that 
the missing values in the dataset is indeed completely at random according to this test. A 
heatmap was generated to illustrate the correlation among all features within the dataset. 
Figures 3(a) and 3(b) depict the heatmap and visualizations of missing data, respectively. 
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(a) 

 

(b) 

 

Figure 3. (a) Heatmap and (b) Missing values. 

4.3 Data Pre-processing 

During preprocessing, the dataset, confirmed to have missing values occurring at random 
through missing data plots and the MCAR test, underwent Expectation-Maximization (EM) 
imputation that helps to estimate and fill in missing values based on the observed data. 
Subsequently, the 'GENDER' column was transformed into numeric values using 'label 
encoder.' The 'StandardScaler' from scikit-learn python library was then applied to standardize 
the feature variables. This standardization, aimed at achieving zero mean and unit variance in 
input features, facilitates enhanced performance of ML models. It is important to mention that 
both the 'GENDER' column, being categorical, and the target variable 'SWAB' were excluded 
from standardization, as standardization is typically applied to numerical features only. Once 
the preprocessing is completed, the dataset is then split into 80% training and 20% testing set 
using train-test split.  

An important consideration during preprocessing is ensuring that the integrity of the 
dataset remains intact, particularly when handling categorical data and imputation technique. 
The use of EM imputation not only addresses missing values but also maintains the dataset's 
underlying statistical structure, which is crucial for building reliable predictive models. 
Furthermore, the decision to exclude categorical variables like 'GENDER' and the target 
variable from standardization aligns with best practices, as improper standardization of such 
columns could distort their meaningful contribution to the model. By splitting the data into 
training and testing sets, the model ensures that the ML models are evaluated on unseen data, 
providing a robust measure of their generalization performance. These steps collectively form 
the foundation for development of an accurate and scalable predictive model for COVID-19 
diagnosis. Framework of Diagnostic Prediction of COVID-19 disease is shown in Figure 4. 
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Figure 4. Framework of Diagnostic Prediction of COVID-19 Disease. 

4.4 Feature Selection Techniques 

As described, the feature selection techniques utilized in this research are: PCA, RFE, and 
LASSO. PCA feature exclusion generates new characteristics through linear combinations of 
original instances, maximizing dataset variance while excluding already accounted variance. 
The resulting PCA components capture reduced variance compared to the initial features. 
Widely used in machine learning, PCA effectively reduces dimensionality and eliminates 
redundant records within selected features (Lang et al., 2019). RFE optimizes feature 
combinations by recursively omitting specific features, building models on the remaining data, 
and cleaning the optimal blend constructed on modelling outcomes (Zhou et al., 2022). RFE 
finds widespread use in various fields such as landslide vulnerability evaluation, biological data 
recognition, and land utilization categorization because of its benefits and practicality (Lin et 
al., 2017; Mostafiz et al., 2020). LASSO is a type of regularization method that can be used to 
prevent overfitting in statistical models (Friedrich et al., 2022). In contrast to other techniques 
for identifying variables like Classification and Regression Tree (CART) and Random Forest, 
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LASSO is particularly effective in correctly identifying relevant variables in psychiatric data. 
Table 3 provides the comparison of these techniques. 

Table 3. Comparison of Feature Selection Techniques. 
 

Parameters PCA RFE LASSO 
Procedure 
Scrutiny 

Dimensionality reduction 
technique 

Feature elimination 
method 

Feature selection method 
with regularization 

Benchmarks Captures maximum 
variance in data 

Selects features based on 
importance 

Shrinks coefficients, selects 
features 

Search Transformation of original 
features into orthogonal 
components 

Iteratively removes 
features based on model 
performance 

Penalizes coefficients 
towards zero, performing 
feature selection 

Findings Reduced dimensionality, 
orthogonal feature space 

Reduced feature set, 
preserved predictive 
power 

Sparse coefficient vector, 
feature selection 

4.5 Machine Learning Models 

This study employed three models trained utilizing machine learning to forecast COVID-19. 
The Support Vector Machine (SVM) is excellent at identifying trends and classifying data, 
separating classes using high-dimensional dividing lines. Logistic Regression (LR), a 
prominent statistical method, determines the probability that a specific instance is a member of 
a particular class, making it appropriate to handle binary and multi-class issues. Lastly, Extreme 
Gradient Boosting (XGBoost) utilizes a sequential learning technique, constructing a series of 
progressively accurate models to improve overall prediction performance. Each model offers 
distinct strengths to the task of predicting COVID-19. 

4.6 Evaluation Metrics 

To determine how well the model predicts, it is tested using a test set of unobserved data. The 
percentage of the test set predictions that the model correctly identified is known as accuracy. 
In simple terms, it shows the model's overall ability to classify data that is received. The quality 
of positive predictions—that is, the degree to which the researcher can have faith that an 
identified positive case is, in fact, positive—is the main emphasis of precision as Equation (1) 
states: 
 

  

 
(1) 

The accuracy of positive predictions, that is, how well the model finds every genuinely 
positive case in the data, is the main emphasis of recall as Equation (2) states: 

 

  

 

(2) 

Recall and precision are combined into one parameter called the F1-Score. It creates a 
balance between these two metrics, making sure a model cannot get a high score by being 
exceptionally good at one thing, as Equation (3): 

 

  

 

(3) 

Because of this, the F1-Score serves as a helpful gauge of a model's general efficiency in 
detecting infected patients, provided by Equation (4): 
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𝐹1 𝑠𝑐𝑜𝑟𝑒 =  

2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

(4)  
 
 

 
5. Results 

5.1 Experiment 1: Exclusion of Grid Search CV 

This study examined the dataset of 279 patients hospitalized in IRCCS Ospedale San Raffaele 
Hospital in Milan, Italy, from late February to mid-March 2020. The information contains 
demographics, blood test results, and COVID-19 test status (positive or negative). EM 
imputation was opted to handle missing values for blood tests. To identify COVID-19 risk 
factors, the data was subjected to a variety of feature extraction methods (such as RFE, LASSO, 
and PCA) and ML models such as SVM, LR, and XGBoost. Table 4 highlights the number of 
features each technique selects. 

 
Table 4. Selected Features for Each Technique. 

 

Methods FS Technique Selected Features Types of Features 

Filter PCA 6 Eosinophils, Lymphocytes, 
Basophils, Neutrophils, GGT, 
and LDH 

Wrapper RFE 5 GENDER, WBC, AST, LDH, 
and CRP 

Embedded LASSO 8 GENDER, WBC, Eosinophils, 
CRP, AST, ALT, ALP, LDH 

The PCA analysis demonstrates the importance of dimensionality reduction by 
selecting six principal components that encapsulate the most significant variations in the 
dataset while avoiding redundancy. RFE (Recursive Feature Elimination) emphasizes the 
utility of wrapper methods by selecting five key features based on iterative model performance 
evaluation, which includes both clinical and demographic variables. Embedded methods like 
LASSO prioritize sparsity by enforcing feature selection through regularization, highlighting 
the eight most relevant predictors, including both blood biomarkers and demographic data. 
The balance achieved in each technique underscores the importance of tailoring feature 
selection to the specific algorithm and dataset properties. Moreover, the selected features align 
well with established clinical markers of COVID-19 severity, enhancing model interpretability 
and real-world application potential. These methodologies collectively optimize the trade-off 
between computational efficiency and predictive accuracy, offering robust frameworks for 
diagnostic model development.  

The choice of features significantly impacts the model's ability to generalize and make 
accurate predictions, especially in medical datasets with high-dimensional data. PCA's ability 
to retain key information while reducing dimensionality highlights its utility in preprocessing 
steps, particularly for algorithms sensitive to multicollinearity. RFE, as a wrapper method, 
ensures the inclusion of features that contribute directly to model performance, making it ideal 
for datasets with moderate complexity. LASSO, by penalizing less relevant features, not only 
simplifies the model but also helps in avoiding overfitting, a common issue in predictive 
modeling. The integration of these feature selection techniques ensures a comprehensive 
approach to capturing both linear and nonlinear  relationships within the data. By employing 
these varied methodologies, the framework enhances the robustness of diagnostic models, 
making them adaptable to diverse clinical datasets and scenarios. Figure 5(a) and Figure 5(b) 
displays the relevant results. 
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(a) 

 

(b) 
 

Figure 5. (a) Cumulative Explained Variance vs. Number of Components (b) Alpha Values vs. Selected 
Features. 

The Table 5 presents a comparative analysis of various feature selection techniques 
integrated with ML models for predicting outcomes. Techniques such as PCA, RFE, and 
LASSO were paired with classifiers like SVC, LR and XGBoost to evaluate their performance 
across key metrics: accuracy, precision, recall, and F1-score. The results highlight the 
compatibility between feature selection techniques and ML models, showcasing how feature 
selection impacts predictive accuracy and model’s efficiency. 
 

Table 5. Evaluation of ML Models with Integrated Feature Selection. 
 

Technique Accuracy Precision Recall F1-Score 
PCA + SVC 0.7143 0.6863 1.0000 0.8140 
PCA + LR 0.7321 0.7500 0.8571 0.7999 
PCA + XGBoost 0.7321 0.7941 0.7714 0.7826 
RFE + SVC 0.7143 0.7317 0.8571 0.7895 
RFE + LR 0.7143 0.7209 0.8857 0.7949 
RFE + XGBoost 0.7143 0.7317 0.8571 0.7895 
LASSO + SVC 0.7679 0.7619 0.9143 0.8312 
LASSO + LR 0.7679 0.7619 0.9143 0.8312 
LASSO + XGBoost  0.7679 0.7750 0.8857 0.8267 

The accuracy achieved among the feature selection techniques, LASSO consistently 
outperformed PCA and RFE, achieving the highest accuracy of 0.7679 across all paired ML 
models (SVC, LR, and XGBoost). This indicates that LASSO's ability to refine features by 
penalizing irrelevant variables significantly enhances model performance. In contrast, PCA and 
RFE achieved similar accuracy levels, with PCA slightly outperforming RFE when paired with 
Logistic Regression and XGBoost (both achieving 0.7321) compared to RFE's accuracy of 
0.7143. Interestingly, SVC consistently performed slightly lower in accuracy, irrespective of 
the feature selection technique used.  

This comparative analysis on accuracy underscores the importance of selecting the 
appropriate feature selection techniques and ML models integration. While LASSO proved 
superior in this case, the choice of technique might vary based on dataset characteristics and 
the problem's complexity. Additionally, understanding the compatibility between feature 
selection techniques and models is crucial, as suboptimal integration can lead to decreased 
model performance. This emphasizes the need for exploratory analysis to determine the best 
configuration for specific use cases. Figure 6 demonstrates the accuracy results obtained, 
highlighting the variation across different combinations. 
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Figure 6. Accuracy of Integrated Models (exclusion of Grid Search CV). 

The recision scores among the combinations, PCA with XGBoost achieved the highest 
precision of 0.7941, indicating its effectiveness in minimizing false positives while correctly 
identifying positive cases. This is closely followed by LASSO with XGBoost, which recorded a 
precision of 0.7750, demonstrating a similarly robust performance. LASSO generally performed 
well across all ML models, maintaining precision scores above 0.76, showcasing its ability to 
select features that enhance the discriminative capability of the models. Comparatively, RFE 
showed moderate performance, with precision values ranging from 0.7209 to 0.7317, slightly 
trailing PCA in terms of precision.  The analysis highlights the varying impact of feature 
selection techniques on precision. While PCA and LASSO proved more effective in ensuring 
higher precision, RFE exhibited less consistent results. This emphasizes the importance of 
aligning feature selection techniques with specific ML models to achieve optimal precision, 
depending on the dataset and problem context. Figure 7 highlights the precision results obtained 
by the experimentations. 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7. Precision of Integrated Models (Exclusion of Grid Search CV). 

 

For the recall analysis, PCA with SVC combination stands out with a perfect recall of 
1.0000, indicating it identified all relevant cases without missing any. However, this might come 
at the cost of increased false positives, which needs further examination alongside other metrics. 
LASSO-based combinations demonstrated consistently high recall values, with LASSO + SVC 
and LASSO + LR both achieving 0.9143, followed closely by LASSO + XGBoost at 0.8857. 
This indicates that LASSO is adept at selecting features that enhance sensitivity, making it 
suitable for applications where capturing all positive cases is critical. In contrast, PCA with 
XGBoost reported the lowest recall at 0.7714, suggesting a trade-off between its precision and 
recall capabilities. Meanwhile, RFE-based combinations showed balanced performance, with 
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recall values ranging from 0.8571 to 0.8857, highlighting its effectiveness in moderately 
sensitive scenarios. For scenarios prioritizing sensitivity, PCA with SVC or LASSO-based 
combinations emerge as optimal choices, while models like PCA with XGBoost may be better 
suited for precision-focused tasks. Figure 8 highlights the recall analysis. 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 8. Recall Analysis of Integrated Models (Exclusion of Grid Search CV). 

In terms of F1-score, the results show how well the models balance both precision and 
recall, considering the harmonized mean of these two metrics. 

1. LASSO-based techniques (LASSO + SVC, LASSO + LR, LASSO + XGBoost) outperform 
other methods with the highest F1-scores of 0.8312 for both SVC and LR, and 0.8267 for 
XGBoost. These high scores suggest that LASSO feature selection combined with machine 
learning models is particularly effective at providing a good balance between precision and 
recall. 

2. PCA and RFE techniques follow closely behind, with PCA + SVC yielding an F1-score of 
0.8140, the highest among the PCA methods. PCA + LR and PCA + XGBoost both show 
slightly lower scores at 0.7999 and 0.7826, respectively. 

3. RFE + LR has an F1-score of 0.7949, slightly outperforming RFE + XGBoost and RFE + 
SVC, both of which return an F1-score of 0.7895. Overall, LASSO techniques show 
consistent top performance across multiple machine learning models, while PCA and RFE 
also perform well, with PCA showing slightly better results in some cases. This analysis 
highlights LASSO as the most reliable feature selection method in terms of achieving a 
strong balance between precision and recall. Figure 9 highlights the F1-score analysis. 

 

 

 

 

 

 

 

 

 

 

Figure 9. F1-score of Integrated Models (Exclusion of Grid Search CV). 
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5.2 Experiment 2: Inclusion of Grid Search CV 

Further, in this study, we opted Grid Search with Cross Validation (CV) to optimize model 
performance as shown in Table 6. This method enabled us to find the most effective 
combinations of feature selection approaches and algorithms for predicting COVID-19 risk, 
establishing a solid foundation for constructing more accurate and reliable prediction models. 
 

Table 6. Evaluation of ML Models with Integrated Feature Selection (Grid Search CV). 
 

Technique Accuracy Precision Recall F1-Score 
PCA + SVC 0.7143 0.7111 0.9143 0.8000 
PCA + LR 0.7321 0.7500 0.8571 0.7999 
PCA + XGBoost 0.7500 0.7692 0.8571 0.8108 
RFE + SVC 0.7143 0.7568 0.8000 0.7777 
RFE + LR 0.7143 0.7111 0.9143 0.8000 
RFE + XGBoost 0.6964 0.725 0.8286 0.7733 
LASSO + SVC 0.7679 0.8236 0.8000 0.8116 
LASSO + LR 0.7679 0.7619 0.9143 0.8312 
LASSO + XGBoost  0.7679 0.7619 0.9143 0.8312 

The evaluation of machine learning models using Grid Search CV reveals that LASSO-
based models consistently outperform others across all performance metrics. Both LASSO + 
LR and LASSO + XGBoost achieve the highest F1-score of 0.8312, demonstrating an excellent 
balance between precision and recall, alongside the highest accuracy of 0.7679. These results 
highlight LASSO's strength in selecting meaningful features and minimizing false positives 
effectively, with LASSO + SVC achieving the highest precision of 0.8236. Similarly, PCA-
based models, particularly PCA + XGBoost, show robust performance with an F1-score of 
0.8108, accuracy of 0.7500, and a recall of 0.8571, making them a competitive alternative for 
feature selection tasks. While RFE-based models exhibit slightly lower accuracy and F1-
scores—ranging from 0.7733 to 0.8000—they still offer a reliable solution for capturing 
essential features. Overall, LASSO-based approaches emerge as the most effective, providing 
superior performance across metrics, followed by PCA as a strong contender. RFE, while 
slightly behind, remains a viable option for applications with less stringent performance 
requirements. Figure 10 explores the experimentation results achieved 

Figure 10. Evaluation of Machine Learning Models with Grid Search CV. 
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5.3 Experiment 3: Extreme Learning Machine 

The Extreme Learning Machine approach was used to determine feature weights indirectly by 
computing correlation significance coefficients, correlation indices, absolute influence 
coefficients, and feature weights (Rajpal et al., 2022). Here is an outline into the way their 
approach was applied. 

1. Training the ELM Classifier: We built an ELM Classifier object and trained the model. 
2. Extraction of Beta (Coefficient) Matrix: After training the ELM model, we acquired the 

optimum beta matrix. This beta matrix represents the coefficients associated with the 
connections between the ELM model's input and hidden layers. 

3. Initializing Random Weight Matrix: Then we created a random weight matrix based on 
the amount of characteristics in the dataset and nodes in the ELM model's hidden layer. 

4. Calculate the Correlation Significance Coefficient : This function uses the weight matrix, 
the beta matrix, and the index as input. It iterates across the concealed nodes, calculating 
the correlation significant coefficient using the ELM model parameters. 

5. Calculating Correlation Index: The next function calculates the correlation index using 
the correlation significant coefficient. This index measures the strength of the link 
between the input features and the target variable, as described by the ELM. 

6. Calculating Absolute Influence Coefficient: The function uses the calculating correlation 
index and pre-calculated R values to get the absolute influence coefficient. This 
coefficient indicates the relative value of each parameter for forecasting the target 
variable. 

7. Feature Weight: This calculates the feature weight by aggregating the absolute influence 
coefficients over all features. This weight embodies the grade of significance of each 
feature in the classification task. 

We employed this Extreme Learning Machine model-based feature selection (FSELM) 
technique to find key features for predicting COVID-19, namely, Age, Platelets, Neutrophils, 
Lymphocytes, Eosinophils, Basophils, CRP, AST, ALT, and LDH.  Weights for every feature 
were determined by dissecting the model's architecture through the learning procedure. 

The weights represent how much each feature contributes to the forecast.  Then, using 
these weights, we prioritize or choose the most informative features for our classification 
models (SVM, LR, XGBoost). Table 8 highlights the evaluation of the FSELM approach 
without applying Grid Search CV provides key insights into the performance of different 
machine learning models. Table 7 highlights the experimental results 

Table 7. Evaluation of Feature Selection Exteme Learning Machine. 
 

Technique Accuracy Precision Recall F1-Score 
FSELM + SVM 0.6964 0.6875 0.9429 0.7952 
FSELM + LR 0.6964 0.7143 0.8571 0.7792 
FSELM + XGBoost 0.6786 0.7179 0.8000 0.7568 

Among the techniques, FSELM + SVM demonstrates the highest recall value of 0.9429, 
indicating a strong ability to identify positive cases. However, its accuracy of 0.6964 and 
precision of 0.6875 suggest a relatively higher occurrence of false positives, slightly affecting 
its overall reliability. The F1-score of 0.7952 highlights its balanced trade-off between 
precision and recall. On the other hand, FSELM + LR exhibits consistent performance with an 
accuracy of 0.6964 and a slightly higher precision of 0.7143 compared to FSELM + SVM. Its 
recall of 0.8571 and F1-score of 0.7792 indicate that it effectively balances both sensitivity and 
specificity, making it a reliable choice for general applications. FSELM + XGBoost, while 
achieving the lowest accuracy (0.6786) among the techniques, still maintains reasonable 
precision (0.7179) and recall (0.8000). Its F1-score of 0.7568 suggests that the technique 
prioritizes precision over sensitivity compared to the other two models. Overall, FSELM + 
SVM excels in recall, making it highly suitable for tasks requiring accurate identification of 
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positive cases. However, FSELM + LR provides more balanced performance across all metrics, 
while FSELM + XGBoost demonstrates moderate effectiveness, with room for improvement 
in both accuracy and recall. These results provide a baseline for comparison with the models 
fine-tuned using Grid Search CV. The evaluation of FSELM techniques with Grid Search CV 
shows noticeable improvements in performance metrics compared to the previous results 
without optimization as shown in Table 8. 

Table 8. Evaluation of Feature Selection Exteme Learning Machine with Grid Search CV. 
 

Technique Accuracy Precision Recall F1-Score 
FSELM + SVC 0.6786 0.6889 0.8857 0.775 
FSELM + LR 0.6964 0.7143 0.8571 0.7792 
FSELM + XGBoost 0.7321 0.7500 0.8571 0.8000 

Among the models, FSELM + XGBoost emerges as the most robust, achieving the 
highest accuracy of 0.7321, precision of 0.7500, and an F1-score of 0.8000. This indicates that 
Grid Search CV has effectively optimized the model's hyperparameters, allowing it to deliver 
a balanced performance across all metrics while maintaining a strong recall value of 0.8571. 
FSELM + LR displays consistent results, with an accuracy of 0.6964, precision of 0.7143, and 
a recall of 0.8571. The F1-score of 0.7792 signifies balanced performance, although its overall 
improvement is less pronounced than that of FSELM + XGBoost.  

FSELM + SVC achieves a recall of 0.8857, which is the highest among the three models, 
highlighting its ability to identify positive cases effectively. However, its lower accuracy 
(0.6786) and precision (0.6889) suggest some trade-offs in false positives. Its F1-score of 0.775 
reflects its moderately balanced performance, but it trails behind the other techniques in overall 
accuracy. In conclusion, FSELM + XGBoost demonstrates the most significant enhancement 
through Grid Search CV, delivering the best overall performance. While FSELM + LR provides 
reliable and consistent results, FSELM + SVC is particularly strong in recall, making it suitable 
for tasks where sensitivity is a priority. These findings underscore the effectiveness of Grid 
Search CV in optimizing model performance for feature selection and machine learning 
integration. Figure 11 highlights the results of our experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 11. Evaluation of Machine Learning Models with Grid Search CV. 
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6. Discussion 
Our findings provide significant new insights into the development of COVID-19 risk 
prediction models and feature selection techniques. Three distinct feature selection methods—
LASSO, Recursive Feature Elimination (RFE), and Principal Component Analysis (PCA)—
were thoroughly investigated. PCA demonstrated a strong ability to balance maintaining 
essential features while reducing data complexity. LASSO effectively identified the most 
relevant attributes and minimized the influence of less significant ones. The results further 
emphasize the importance of evaluating models using multiple performance metrics. 

For instance, LASSO combined with all three machine learning (ML) models delivered 
superior accuracy overall, and when integrated with Grid Search CV, LASSO with Support 
Vector Classifier (SVC) achieved the highest precision among all algorithms. For recall, PCA 
with SVC outperformed other combinations both with and without Grid Search CV. Notably, 
for the F1-score, LASSO with Logistic Regression (LR) delivered the best overall results. 
Additionally, PCA consistently outperformed RFE across all three ML algorithms, 
underscoring that no single feature selection method can universally optimize all performance 
metrics. We also explored the potential of the Extreme Learning Machine (ELM) technique to 
identify critical features for COVID-19 risk prediction. This approach allowed us to recover 
the beta matrix, which contains the connection weights between the input and hidden layers of 
the ELM classifier. By calculating coefficients such as correlation significance, correlation 
index, and absolute effect coefficient, we inferred feature weights indirectly. Using these 
feature weights, we prioritized the most relevant features for ML models like SVM, LR, and 
XGBoost. The results demonstrated that ELM-based feature selection significantly enhanced 
the predictive capabilities of these models. Specifically, ELM with SVC achieved a recall of 
0.9429 prior to applying Grid Search CV and retained superior performance even after 
optimization, outperforming LR and XGBoost in this regard. 

While this study provides valuable insights into feature selection and ML model 
development for COVID-19 risk prediction, several limitations should be addressed in future 
research. Firstly, we utilized a single dataset, which may limit the generalizability of our 
findings incorporating data from multiple sources could yield more robust and widely 
applicable results. Secondly, our analysis focused on seven ML algorithms. Expanding this 
scope to include deep learning approaches could further enhance prediction accuracy. Thirdly, 
we concentrated solely on clinical data. Including lifestyle factors (e.g., physical activity and 
smoking habits) and socioeconomic variables could provide a more holistic perspective on 
COVID-19 risk. Moreover, integrating unstructured data types, such as medical images and 
ECG signals, could uncover additional insights. Lastly, the limited size of the dataset poses a 
restriction on the broad applicability of our conclusions. Future studies with larger and more 
diverse datasets may enhance the generalizability and impact of this research. 

 
7. Conclusion 

This study highlights the critical role of feature selection techniques in enhancing the 
performance of ML models for COVID-19 risk prediction. By evaluating PCA, RFE, and 
LASSO alongside various ML algorithms, we identified LASSO with SVC as the best 
performer under Grid Search CV, achieving high accuracy (0.7679) and precision (0.8236). 
Other combinations, such as LASSO with LR and XGBoost, excelled in recall (0.9143) and 
F1-score (0.8312), emphasizing the importance of aligning feature selection methods with 
model types. Additionally, the ELM-based feature selection approach proved effective in 
identifying key predictors and improving classification performance, particularly with SVM 
and XGBoost after optimization. Notably, LDH emerged as the most critical feature for 
COVID-19 prediction, followed by Eosinophils, CRP, and AST. In conclusion, our findings 
underscore the value of robust feature selection and optimization techniques in developing 
reliable, interpretable ML models for medical applications. 
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