Analysis on the performance of dual stack transparent antenna made of Azo transparent conductive materials / Mardhiah Awalludin

Awalludin, Mardhiah (2020) Analysis on the performance of dual stack transparent antenna made of Azo transparent conductive materials / Mardhiah Awalludin. PhD thesis, Universiti Teknologi MARA.

Abstract

The demand for multi-function application in modern wireless communication system has created a growing interest of incorporating optically transparent and electrically conductive material in antenna designs. Over two decades, the microstrip patch antenna (MPA) due to its low profile, small size, low cost and easy fabrication process has gained numerous research attention for such wireless application systems. However, despite the advantages MPA offers, narrowband issues remain to be solved for the antenna to reach its full potential, especially if it is to be integrated with transparent materials. Wideband technology become one of the promising technology to fulfill the demand on providing wide bandwidth and high data transmission in the latest and future portable home and office devices for audio and video streaming. This thesis presents dual-stacked transparent microstrip patch antenna development for future wireless communication system as solution for narrowband problem. Instead of using copper as the conductive patch like in conventional MPAs, the proposed antennas utilised transparent substrates and transparent conductive thin films as an alternative solution. As a preliminary study, single Aluminium Doped Zinc Oxide (AZO) microstrip patch antenna using three different transparent dielectric substrates (glass, quartz or Polymethyl methacrylate (PMMA)/Perspex) were simulated at 2.4 GHz. The antenna based on PMMA/Perspex substrate showed higher impedance bandwidth and directivity than the antenna based on quartz and glass substrates. Therefore, PMMA/Perspex was chosen as the transparent substrate for the next investigation besides physical properties of the substrate, which are flexible and non-fragile, also provided advantages for this research. The chosen PMMA/Perspex was used to further investigate a single MPA resonating at 5 GHz based on three different transparent conductive films such as AZO, Indium Tin Oxide (ITO) and Silver Coated Polyester (AgHT-8). In this second investigation, a narrow bandwidth of 0.135 GHz (2.7%), 0.21 GHz (4.2%), and 0.21 GHz (4.2%), were achieved for AZO, ITO and AgHT-8 single MPA, respectively. Therefore, these simulation results have led to the development of dual-stacked transparent MPAs. The stacking technique was subsequently employed, introducing an air gap in the antenna structure. The dual-stacked antennas were simulated, fabricated and experimentally verified. All designs were simulated using CST Microwave Studio Software. AZO thin film was deposited on PMMA/Perspex substrate using RF magnetron sputtering technique, whilst ITO and AgHT-8 thin films were ready-made commercial films available in the market. All measured S11 were slightly varied compared to simulation results due to fabrication tolerances. Adding an air-gap to the structure was proven with the impedance bandwidth that increased up to 160% for AZO dual-stacked MPA compared to its corresponding single MPA. However, the characteristic of film material used affected the performance of all antennas, where the antennas exhibited negative gain values and also low efficiency.

Metadata

Item Type: Thesis (PhD)
Creators:
Creators
Email / ID Num.
Awalludin, Mardhiah
2013456572
Contributors:
Contribution
Name
Email / ID Num.
Thesis advisor
Awang, Robi’atun Adayiah (Dr.)
UNSPECIFIED
Subjects: T Technology > TK Electrical engineering. Electronics. Nuclear engineering > Electronics > Apparatus and materials > Antennas
Divisions: Universiti Teknologi MARA, Shah Alam > Faculty of Electrical Engineering
Programme: Doctor of Philosophy (Electrical Engineering)
Keywords: Transparent materials; antenna
Date: October 2020
URI: https://ir.uitm.edu.my/id/eprint/61054
Edit Item
Edit Item

Download

[thumbnail of 61054.pdf] Text
61054.pdf

Download (64kB)

Digital Copy

Digital (fulltext) is available at:

Physical Copy

Physical status and holdings:
Item Status:

ID Number

61054

Indexing

Statistic

Statistic details