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Abstract

In this study, we employed the Runge-Kutta Fourth Order (RK4) method and the Banach
Contraction Method (BCM) to simulate an epidemiological model with constant vaccina-
tion, utilizing parameters and initial conditions established according to Fauzi et al. (2021).
The solutions for susceptible (S), infected (I), and recovered (R) individuals were obtained
and compared between RK4 and BCM over a time range of 0 to 2. Although an exact
solution reference was unavailable, our comparative analysis revealed consistent results be-
tween RK4 and BCM at the initial time steps for all variables. However, as time progressed,
minor differences emerged between the solutions obtained from RK4 and BCM, albeit these
differences were relatively small. While the variations observed may not be significant in
magnitude, they underscore the importance of selecting appropriate numerical techniques
in epidemiological modeling to ensure accurate predictions over time.

Keywords: Banach Contraction Method; SIR epidemic model; Runge-Kutta method; Maximum error
remainder.

1. Introduction

Simulating infectious illnesses is important to control them and reduce the epidemic. Constant vac-
cination is a crucial method for controlling infectious diseases. As individuals get vaccinated, they move
from the susceptible to the immune compartment, reducing potential hosts. This strategy maintains high
immunity, limits disease transmission, and mitigates epidemic impact. Following a standard constant
vaccination strategy, vaccines should be administered to susceptible newborns. In the past, diligent vac-
cination campaigns have resulted in high levels of permanent immunity against the childhood diseases
prevalent among the population (Kumar and Kumar, 2014).

The Susceptible Infectious Recovered (SIR) model, a foundational mathematical framework, was
among the earliest models created to elucidate the transmission of infectious diseases within a popula-
tion. According to Magal and Webb (2018) SIR model was introduced by Kermack and McKendrick
in 1927, it describes disease transmission through individuals, utilizing basic notations like susceptible
(S), infectious (I), recovered (R), and population size (N). In this model, the population is assumed to be
constant so that the birth rate and death rate are equal, and the efficacy of the vaccine is 100% (Kumar
and Kumar, 2014). This model has significantly contributed to shaping the understanding of epidemics,
offering key insights into the dynamics of disease spread.

Nonlinear functional equations, such as the SIR model, are prevalent in various scientific fields and
require iterative and numerical methods for precise solutions. An iterative method based on the Banach
contraction principle was proposed by Daftardar-Gejji and Bhalekar (2009) to solve the general nonlinear
functional equation in the form, u = f+N(u), where f is a known function and N is a nonlinear operator.
BCM is useful for solving general nonlinear functional equations, proving the existence and uniqueness
of solutions in various mathematical models. The primary goal of this study is to solve SIR with constant
vaccines using BCM and validate its accuracy and efficiency, as few studies have solved this epidemic
model using BCM. This involves evaluating how well BCM performs compared to other methods in
dealing with the SIR epidemic model.

In recent research by Marinov and Marinova (2022), the SIR epidemic model underwent analysis us-
ing the Variational Iteration Method, specifically focusing on formulating and solving the inverse equa-
tion through the Method of Variational Embedding. This study aimed to demonstrate the effectiveness
of an inverse approach in identifying time-dependent functions and parameters of the SIR model, utiliz-
ing COVID-19 data from Israel, the United States, and Japan. Additionally, both Mungkasi (2021) and
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Rafei et al. (2007) recognized and employed the variational iteration method in their respective inves-
tigations of the SIR epidemic model. Mungkasi conducted a comparative analysis with the successive
approximation method, incorporating Lagrange multipliers through variational theory. Rafei et al. fol-
lowed a similar approach, emphasizing the method’s accuracy and reduced computational requirements,
supporting findings consistent with Mungkasi’s assertions.

Several previous studies demonstrate the application of BCM in various contexts. In the most recent
publication by Raslan and Entesar (2022), the authors explore the use of BCM to solve the Drinfeld-
Sokolov-Wilson system. The results, assessed through absolute maximum error (MAE) and mean square
error (MSE) in comparison to an exact solution, affirm the efficiency of BCM. Meanwhile, Ghitheeth
and Mahmood (2021) addresses the solution of partial differential equations using BCM, enhancing re-
sults through the integration of the trapezoidal rule. The hybridization of BCM with the trapezoid base
proves effective in solving non-linear partial difference equations, with the efficiency validated through
calculated MSE and MAE. Additionally, Al-Jawary et al. (2018) demonstrates the applicability of BCM
in solving nonlinear initial value problems. Their study focuses on the thin film problem of a non-
Newtonian fluid on a moving belt, proposing a method based on Banach’s contraction principle. The
accuracy of the obtained solutions is determined by comparing them with results from other authors who
utilized methods such as Runge-Kutta and Newton-Rhapson-Euler-based solutions.

2. Banach Contraction Method

We start this section by stating some basic concepts(Daftardar-Gejji and Bhalekar, 2009).

Definition 2.1. Let X1 and X2 be two metrics and F be a mapping from X1 into X2. F is said to
be Lipschitz if there exists a real number r ≥ 0 for all x1, x2 ∈ X such that the distance between
d(Fx1, Fx2) ≤ rd(x1, x2). If the Lipschitz r < 1, the F is termed as a contraction mapping.

Theorem 2.2. Let F be contraction mapping with a Lipschitz constant r, of a complete metric space X ,
then F has a unique fixed point u within the space X . An addition, if x0 is an arbitrary point in X and

x is defined by xn+1 = F (xn), n = 0, 1, 2, ..., the lim
x→∞xn = u and d(xn, u) ≤ rn

1− r
d(x1, x0).

Theorem 2.3. Let F be a mapping of a complete metric space X into itself such that F k is a contraction
mapping of X for some positive integer k, then F has a unique fixed point in X .

To illustrate the basic concept of BCPM, we introduce the following nonlinear equation

L(u(x)) +N(u(x)) + g(x) = 0, x > 0 (1)

where x represents the independents variable, u(x) is the unknown function, g(x) is a given function, L is

the linear operator defined as L =
dn

dxn
, n ∈ N, N is the nonlinear operator, subject to initial conditions

u(k)(0) = ck, k = 0, 1, 2, · · ·, n− 1 (2)

where ck’s are real numbers. Performing the integral operator with n fold with respect to x, denoted by
Inx , to (1), with the initial conditions (2) we obtained the following general functional equation:

u(x) = f(x) + Inx [N(u(x))] (3)

where f(x) is a known analytic function that represents the sum of the available initial conditions and the
result of integrating the function g(x) (if such function is available). To implement the BCPM, we define
successive approximations as the following

u0(x) = f (4)

u1(x) = u0(x) + Inx [N(u0(x))]

u2(x) = u0(x) + Inx [N(u1(x))]

...

un(x) = u0(x) + Inx [N(un−1(x))], n = 1, 2, ... (5)

Therefore, the solution for the equation (1) will be obtained by

u(x) = lim
n→∞un(x) (6)
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2.1. Solving SIR model by BCM

We examine the epidemic model incorporating constant vaccination, formulated as:

dS

dt
= (1− P )π − βsi− πs

dI

dt
= βsi− (γ + π)i

dR

dt
= Pπ + γi− πr

Here, S represents susceptible individuals, I denotes infected individuals, and R stands for recovered
individuals. By applying BCM to the SIR epidemic model with constant vaccination, we have:

s1(t) = s0(t) +

∫
(1− P )π − βs0i0 − πs0 dt

i1(t) = i0(t) +

∫
βs0i0 − (γ + π)i0 dt

r1(t) = r0(t) +

∫
Pπ + γi0 − πr0 dt

...

sn+1(t) = s0(t) +

∫
(1− P )π − βsnin − πsn dt

in+1(t) = i0(t) +

∫
βsnin − (γ + π)in dt

rn+1(t) = r0(t) +

∫
Pπ + γin − πrn dt (7)

3. Numerical Results and Discussion

The parameters are determined according to Fauzi et al. (2021), with β = 0.8, γ = 0.03, π = 0.4, and
P = 0.9. Initial conditions are S(0) = 0.8, I(0) = 0.2, and R(0) = 0.

The first few solutions for S(t), I(t) and R(t):

S0(t) = 0.8

S1(t) = 0.8− 0.408t

S2(t) = 0.8− 0.408t+ 0.1008t2 + 0.0045696t3

...

I0(t) = 0.2

I1(t) = 0.2 + 0.042t

I2(t) = 0.2 + 0.042t− 0.02823t2 − 0.0045696t3

...

R0(t) = 0

R1(t) = 0.366t

R2(t) = 0.366t− 0.07257t2

...
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Table 1 presents a comparison of solutions for S(t) obtained using the Runge-Kutta Fourth Order
(RK4) method and the BCM. Each line corresponds to a specific time (t) between 0 to 2, with an addi-
tional step of 0.2. RK4 and BCM solutions are provided for each time point, allowing a direct comparison
between the two methods. Notably, at t = 0, both RK4 and BCM produce the same result of 0.8 for S(t),
indicating agreement between the methods at early time steps. As time passes, small differences between
the RK4 and BCM solutions become apparent, as evidenced by the small absolute differences in the final
column. These differences, although negligible in magnitude, suggest little variation in the predicted
susceptible population as predicted by the two methods over the specified time intervals.

Meanwhile, in Table 2, a similar comparative analysis is conducted for the I(t) solution obtained
using RK4 and BCM. As in Table 1, solutions are provided for time points between 0 and 2, allowing
a comprehensive assessment of the agreement between methods. Again, at t = 0, both RK4 and BCM
produce the same result of 0.2 for I(t), indicating consistency between the methods at early time steps.
However, as time passes, small differences appear between the RK4 and BCM solutions, resulting in
small absolute differences. This difference, although still small, suggests a slight discrepancy in the
predicted number of infected individuals between the two methods in the specified time range.

Table 3, on the other hand, provides a comparison of the solution for R(t) obtained using RK4 and
BCM. Similar to Tables 1 and 2, solutions are presented for time points between 0 and 2, facilitating a
comprehensive comparison between methods. At t = 0, both RK4 and BCM produce the same result 0
for R(t), indicating agreement between the methods at early time steps. However, as time passes, small
differences between the RK4 and BCM solutions become apparent, leading to small absolute differences.
This difference, although relatively small, suggests little variation in the predicted amount of recovered
individuals between the two methods over the specified time interval. Overall, the table provides valuable
insight into the agreement and discrepancy between the solutions obtained using RK4 and BCM for
susceptible, infected and recovered individuals in epidemiological models.

Table 1: Comparison of solution for S(t) between RK4 with BCM

t RK4 BCM |u(t)− s(t)|
0 0.8 0.8 0

0.2 0.722363409 0.722363409 4.60199e−12

0.4 0.652358747 0.652358748 6.07521e−10

0.6 0.589504728 0.589504738 1.07339e−8

0.8 0.533282313 0.533282396 8.33227e−8

1.0 0.48315286 0.483153272 4.12181e−7

1.2 0.438574997 0.43857653 1.53256e−6

1.4 0.399018893 0.399023568 4.675e−6

1.6 0.363977304 0.363989627 1.2323e−5

1.8 0.33297338 0.333002398 2.90182e−5

2.0 0.305565507 0.305627945 6.24387e−5
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Table 2: Comparison of solution for I(t) between RK4 with BCM

t RK4 BCM |u(t)− s(t)|
0 0.2 0.2 0

0.2 0.207265729 0.207265729 1.39999e−12

0.4 0.212274615 0.212274615 2.08049e−10

0.6 0.215107503 0.215107499 4.08616e−9

0.8 0.215913103 0.215913068 3.48537e−8

1.0 0.214887196 0.214887009 1.87379e−7

1.2 0.212253434 0.212252685 7.49343e−7

1.4 0.208247027 0.208244593 2.43475e−6

1.6 0.203101889 0.203095114 6.77524e−6

1.8 0.197041235 0.197024528 1.67072e−5

2.0 0.190271305 0.19023393 3.73743e−5

Table 3: Comparison of solution for R(t) between RK4 with BCM

t RK4 BCM |u(t)− s(t)|
0 0 0 0

0.2 0.068019715 0.070370862 0.002351147

0.4 0.130774542 0.135366637 0.004592095

0.6 0.188682081 0.195387762 0.006705681

0.8 0.242127149 0.250804536 0.008677387

1.0 0.291463973 0.30195972 0.010495747

1.2 0.337018326 0.349170786 0.01215246

1.4 0.379089605 0.39273184 0.013642235

1.6 0.41795283 0.432915259 0.01496243

1.8 0.453860554 0.469973074 0.01611252

2.0 0.487044676 0.504138124 0.017093448

The comparison between RK4 and BCM results can be visualized through graphs. The figures 1, 2
and 3 below illustrate the comparison of S(t), I(t), and R(t) between RK4 and BCM.

Figure 1 depicts a contrast between the susceptible population, derived from both BCM and RK4
methods. Notably, during the initial phase, there is minimal disparity between the two solutions. Never-
theless, discrepancies become more pronounced as time progresses. This pattern is similarly observed in
the solutions for infected individuals and recovered individuals, as illustrated in Figures 2 and 3, respec-
tively.

Therefore, the comparison of solutions for S(t), I(t), and R(t) obtained by both BCM and RK4
methods revealed significant findings. At first, there is little discernible difference between the solutions.
However, with the progress of time, the variation between the two methods became more and more
apparent. This emphasizes the importance of choosing an appropriate numerical technique, as it can
significantly affect the accuracy and behavior of simulation results in epidemiological modeling.
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Figure 1: Comparison of RK4 method with BCM for S(t)

Figure 2: Comparison of RK4 method with BCM for I(t)

4. Conclusion and Recommendation

In this study, we used the Runge-Kutta Fourth Order (RK4) method and the Banach Contraction Method
(BCM) to simulate an epidemiological model with continuous vaccination, using parameters and initial
conditions set according to Fauzi et al. (2021). Solutions for S(t), I(t), and R(t) were obtained and
compared between RK4 and BCM in the time range 0 to 2. Although exact solution references are not
available, our comparative analysis revealed consistent results between RK4 and BCM at the initial time
step for all variables. However, as time passes, small differences appear between the solutions obtained
from RK4 and BCM, although these differences are relatively small. Although the observed variations
may not be significant in magnitude, they emphasize the importance of choosing appropriate numerical
techniques in epidemiological modeling to ensure accurate predictions over time.

For future studies, it is recommended to explore additional numerical methods and techniques to
solve epidemiological models, beyond RK4 and BCM, to further evaluate their accuracy and efficiency
in capturing the dynamics of the spread of infectious diseases. Additionally, the effect of varying model
parameters and initial conditions on the results should be investigated to gain insight into the sensitivity
of model predictions. Additionally, efforts should be directed toward validating model results using real-
world epidemiological data, where available, to improve the reliability and applicability of simulations.
Furthermore, conducting sensitivity analyzes and uncertainty quantification studies can provide valuable
information about the robustness of model predictions and assist in identifying critical factors that in-
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Figure 3: Comparison of RK4 method with BCM for R(t)

fluence disease transmission dynamics. Overall, by addressing these recommendations, future research
efforts may contribute to advancing the understanding and predictive capabilities of epidemiological
models, thereby facilitating more effective public health interventions and strategies.
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