

CFD SIMULATION DRAG FORCE ON GOLF BALL

MOHD RAJALI BIN JALAL (2003472772)

A thesis submitted in partial fulfillment of the requirement for the award of Bachelor Engineering (Hons) (Mechanical)

> Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

> > MAY 2007

ACKNOWLEDGEMENT

First and foremost, I would like to praise to the Almighty for the completion of this final project. The production of this final project would not be finished and accomplished without any help and guidance from those who are officially and unofficially involve in order completing this project. I would like to convey my deeply gratitude to my project advisor Datuk Prof Ir. Dr. Ow Chee Sheng for all his advises, views, and guidance about this project. My special thanks also to Yusof Safarudin (my senior), Dr. Chris (Petronas Engineer) for their teaching about the CFD which I haven't knew before beginning with this project. I also would like to thank to Mr Azli B Abd Razak for his idea on how to generate the golf ball using Gambit Package Software. Not forget to my housemates, Alwafi, Sharifuddin, Zuhdey, Zulhafiz, Sawardi, Nazrul, Hafez, Khairil, and Fadzil who were always forcing and encouraging me to finish this project. Last but not the least, I also would like to convey truly and deeply gratitude to my parents and my siblings for all their patience and moral support to me in order to finish this project. I hope this project could give meaningful knowledge to everyone.

ABSTRACT

The speed of golf balls can be regarded as the fastest in all ball games. The flying distance of a golf ball is influenced not only by its material, but also by the aerodynamics of the dimple on its surface. By using Computational Fluid Dynamics method, the flow field and aerodynamics characteristics of golf balls can be studied and evaluated before the golf balls are actually manufactured. This work uses FLUENT as its solver and numerical simulations were carried out to estimate the aerodynamics parameters for various kinds of golf balls having different dimple configurations. With the aerodynamics parameters so obtained the flying distance and trajectory for a golf ball can be determined and visualized.

TABLE OF CONTENTS

CONTENTS

PAGE TITLE	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii

CHAPTER 1.0

1.1Introduction	1
1.2 Objectives	2
1.3 Methodology	2
1.3.1 Literature Review	2
1.3.2 Procurement of relevant measurements /dimensions	2
1.3.3 Drawing the golf balls	2
1.3.4 Modify and vary the dimple dimensions	3
1.3.5 Simulations	3
1.3.6 Analyze the data	3
1.4 Significance of the project	3
1.5 Project scheduling	4

CHAPTER 2.0 LITERATURE REVIEW

2.1Introduction	5
2.2 Drag	6
2.3 The Golf Ball	7
2.3.1 History	7
2.3.2 Aerodynamics	7
2.3.3 Design	8
2.3.4 Computational Fluid Dynamics	10

CHAPTER 3.0

3.1 Introduction	11
3.2 Dimensional Analysis	12
3.3 Governing Equations	17
3.4 κ-ε Turbulence Model	17

CHAPTER 4.0 GEOMETRY CREATION

4.1 Introduction	19
4.2 Creating the Golf Ball	20
4.2.1 Step 1	20
4.2.2 Step 2	21

CHAPTER 5.0 METHODOLOGY

5.1 Introduction	25
5.2 Simulation Procedure	26
5.3 Pre-processing	27
5.3.1 Geometry Creation	27
5.3.2 Grid Generation	27
5.3.3 Numerical Simulation by the solver	29
5.3.3.1 Solver Setup	29
5.3.3.2 Solution Control	32
5.4 Post-processing	34

CHAPTER 6.0 RESULT AND DISCUSSION

6.1 Introduction	35
6.2 Result	36
6.2.1 2D cylinder (smooth sphere)	36
6.2.2 Specimen 1	37
6.2.3 Specimen 2	38
6.2.4 Specimen 3	39
6.3 Discussion	40