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Abstract - This paper presents the nonlinear identification of a 
DC motor using Binary Particle Swarm Optimization (BPSO) 
algorithm, as a model structure selection method, replacing the 
typical Orthogonal Least Squares (OLS) used in system 
identification. The BPSO algorithm is an evolutionary computing 
technique put forward by (Kennedy and Eberhart, 1997). By 
representing its particles technique as probabilities of change (bit 
flip) of a binary string, the binary string was then used to select a 
set of repressors as the model structure, and the parameter 
estimated using QR decomposition. The DC motor dataset was 
simulated to test the performance of the new model structure 
selection approach. The findings indicate that the BPSO-based 
selection method has the potential to become an excellent and 
effective method to determine parsimonious NARX model 
structure in the system identification model. 

Keywords - System identification, Non-linear Autoregressive 
Model with Exogenous Inputs (NARX), DC motor. 

I. INTRODUCTION 

With the advancement of technology, the importance of 
non-linear modelling in control engineering has been growing. 
Since most of practical system have inherently nonlinear 
characteristic such as saturation, the development of accurate 
nonlinear system identification algorithm is a key problem for 
precise analysis, prediction or control design. System 
identification refers to the general process of extracting 
information about a system from measured input-output data. 
It also can be defined as the task of inferring a mathematical 
modelling of dynamic systems based on a series of 
measurements collected data from the system [1, 2] to resolve 
practical problems [2]. For systems that have complex 
dynamics, it is a well and the best established technique for 
modelling which are not well understood or difficult to model 
[3]. 

System identification consists of two types of modelling 
techniques which usually employed either as linear or non­
linear. The linear modelling assumes that the relationship 
between ihe input and output is linear. The model then tries to 
match and compared with the actual system as closely as 
possible (within certain parameter and computational 
constraints) during identification , then treats the nonlinearity 
as part of the uncertainty [4, 5]. Despite being relatively the 
linear models have certain limitations in describing various 
important dynamics of the actual system, since all systems are 
inherently nonlinear [5-10]. Since nonlinear dynamics are also 
incorporated in the model, the nonlinear modelling techniques 

are not bound by these limitations. However, the nonlinear 
dynamics require increase the complexity of the model 
structure, thus requiring an efficient model structure selection 
method to ensure a parsimonious model (where the system 
dynamics are explained in the least possible number of 
regressors while maintaining a good model fit). 

Generally, in time series modelling the Nonlinear 
Autoregressive Model with Exogenous Inputs (NARX) model 
is a nonlinear autoregressive model which has exogenous 
inputs and convenient system identification model which it 
can describe any non-linear system well [11]. This means that 
the model relates the present value of the time series to both 
either the past values of the same series or present and past 
value of the driving (exogenous) series. In additional, the 
model contains an "error" or "residual" term which relates to 
the fact that knowledge of the other terms will not enable the 
present value of the time series to be predicted exactly. 

NARX is a simplification of the well-established Nonlinear 
Autoregressive Moving Average with Exogenous Inputs 
(NARMAX) model, where the residual terms are ignored. 
Normally, to perform model structure selection the 
Orthogonal Least Squares (OLS) method is used and guided 
by certain information criterion the parameters for the linear 
least squares identification problem was simultaneously 
estimated [1]. 

In this paper, the Binary Particle Swarm Optimization 
algorithm (BPSO) is presented as a novel method for model 
structure selection of a NARX DC motor model by [1,12,13]. 
Particle Swarm Optimization (PSO) is a population-based 
stochastic optimization method. The (PSO) algorithm is base 
on the simulation social behavior of prediction by birds and 
the thought of swam intelligent [14, 15]. Compared to other 
evolutionary population-based methods, it is a powerful 
algorithm and highly efficient and also showing significant 
advantages in speed and convergence [16-18]. It is also 
flexible enough to apply for diverse problems [13,16,19,20]. 

This paper is organized as follows: Section II presents the 
theoretical background of the DC motor model is presented 
first, followed by NARX, BPSO and proposed application to 
the model structure selection problem Section II. In Section 
III, the experimental setup is presented. In Section IV, the 
results and discussions are presented. Finally, conclusions are 
presented in Section V. 



II . THEORETICAL BACKGROUND 

In this section, the theoretical background related to the 
proposed approach will be presented. In section II.A the 
description of the DC motor model used to generate the 
dataset is presented. Section II.B presents an overview of the 
NARX model. Lastly in section II.C the description of the 
BPSO algorithm and its application to the model structure 
selection problem is presented. 

A . Derivation of DC Motor Model 

Modeling and identification of mechanical system 
constitute an essential stage in practical control design and 
application. One of the components in an electromechanical 
system is the DC motor. The DC motor model can be 
constructed and developed based on its mechanical and 
electrical characteristics [21]. 

For the DC motor, Va is the voltage source. The armature 
coil elements can be described with a resistance (Q) -
inductance (£) series and an induced back electromotive force 
(EMF) voltage. Vemf is generated by the rotation of the 
electrical coil through the flux lines of the permanent magnets 
inside the motor. 

Where La is the inductance of the armature coil. Finally, the 
back emf can be written as 

"emf *v 0)„ (4) 

Where kv is the velocity constant determined by the flux 
density of the permanent magnets, the reluctance of the iron 
core of the armature, and the number of turns of the armature 
winding. o)a is the rotational velocity of the armature. 

Substituting equations. (2), (3), and (4) into equation. (1) 
gives the following differential equation: 

V„ - LRa •At 
ia - kva)a = 0 (5) 

(0 Mechanical Characteristic 

From the application of energy-balance principle [21 J, the 
mechanical characteristics of the motor are derived. The sum 
of torques acting during the motor's operation must be equal 
to zero by according to this principle. Therefore: 

Te to 

Fig 1. A schematic diagram of the permanent magnet DC motor 

By consider the equation below, the electrical 
characteristics of the motor can be describing by given: 

T.-T;-T„-TL=O (6) 

Where: 

Te = electromagnetic torque = kA. 

Tm- = j _ = torque produced by rotor's acceleration. 
dt 

T& = torque produced by the rotor's velocity = Pa. 
Ti = torque of the mechanical load. 
kf - torque constant 
J ~ rotor inertia (equivalent to the mechanical load). 
P = damping coefficient of the motor 's rotation 

mechanism. 

iR-L^-V^f^O 

where: 
Va ~ voltage across the armature coil. 
/„ = armature current. 
Ra = resistance of armature coil, be 
La = inductance of armature coil. 

Vemf = EMF voltage 
Kv - velocity constant, 
to = rotational velocity. 

0) The electromagnetic torque is proportional to the current 
through the armature winding and can be written as; 

Te — ktia (7) 

Where kt is the torque constant and like the velocity constant 
is dependent on the flux density of the fixed magnets, the 
reluctance of the iron core, and the number of turns in the 
armature winding. 7*w. can be written as 

According to Ohm's law, the voltage across the resistor can 
be represented as; TW' =]^a (8) 

V» - L R„ (2) 

Where ia is the armature current The voltage across the 
inductor is proportional to the change of current through the 
coil with respect to time and can be written as 

Where, J is the inertia of the rotor and the equivalent 
mechanical load. The torque associated with the velocity is 
written as; 

7",, =B(0„ (9) 

La dt la (*) Where, B is the damping coefficient associated with the 
mechanical rotational system of the machine. 



Substituting equations. (7), (8), and (9) into equation. (6) 
gives the following differential equation in (10): 

change around a reference state [21], If perturbations around 
the steady-state value are considered. This causes (5) and (6) 
to become: 

M« - 1-Z *V ~ Bo>a ~ Ti * 0 dt 
(10) 

/(s) = 
-kvn{s)+va(s) 

Ls+R 

(ii) State Space Representation 

Based on (1) and (2), the following differential of the 
equations given in equations. (5) and (10) for the armature 
current and the angular velocity can be written as equations 
can be derived: 

n(s) = 

(19) 

(20) 

Finally, by assuming the load torque is constant and 
considering only the angular velocity as the observation of 
interest, the block diagram for (19) and (20) can be 
represented as Fig. 2. [21]. 

ii. — m-kvui-va (11) 

d k,. B TL 

d, ~ J 
(12) 

Which describe the dc motor system. Putting the differential 
equations into state space form gives 

G(.s) = 
CiW 

l+Ci(s)H(x) 
(21) 
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This is expressed symbolically as 

El 

—x = Ax + Bu 
dt 

y — Cx + Du 

(13) 

(14) 

(15) 

(16) 

Where x is the state vector, u is the input vector, and y is the 
output vector. 

(iii) Transfer Function Block Diagram 

A block diagram for the system can be developed from the 
differential equations given in equations. (11) and (12). 
Taking the Laplace transform of each equation gives. The 
corresponding Laplace transforms for (3) and (4) are: 

V{s)- A„/ ( s 2 )+ ( « « / + I „ B ) s + K„B+ k,kv 

V{s)-
*flK) 

*2 + [(»„/+ l„B/L.l)]s + (RaB + kfkr)/L.l 

Figure 2. Overall transfer function for the DC Motor 

(iv) Control System Modeling 
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Figure 3. Nonlinear System Identification for DC Motor (control system) 

Finally, by assuming the load torque is constant and 
considering only the angular velocity as the observation of 
interest, the block diagram for (7) and (8) can be represented 
asFig.3[21]. 

The initial conditions will become zero and all the variables 



B. Description ofNARX 
The Nonlinear Autoregressive Model with Exogenous 

Inputs (NARX) model is a general and convenient system 
identification model. Consider the class of discrete-time non-
linier system that can be represent by the following NARX 
structure [11]. The NARX model is defined as: 

v(£) = f'bfc - D<yCt- 2), ...,y(t-n„), 
yy u(t - 1), u(t - 2) u(t - n j ] + E(t) 

(22) 

Where, fd are the coefficients, y(t - l),y(t - 2), ...y{t — 
?iy) are lagged output terms, u(t - l),u(t — 2), ...u(t - n„) 
are lagged input terms, and e(t) are the white noise residuals. 
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Fig.4. Block representation of DC motor model. 

Where y and u is the system input an output variable. The 
selection of model structure involves selecting which lagged y 
and u terms and estimating the parameters that can explain the 
fiiture values of y. 

C Particle Swarm Optimization (PSO) 
The PSO algorithm is base on population two socic-metric 

principles or also know as stochastic optimization technique. 
It taking by looking into animal swarming behavior in nature 
[22] which bird are the optimization corresponds in search 
space or called particle. By taking advantage of the 
cooperative and competitive behavior of particles, PSO 
iteratively searches for solutions in the problem space. 

The particle swarm optimization with constriction factor 
(PSOCF) was chosen due to its convergence properties 
compared to the inertia weight variant will considered for 
implemented in this paper [1]. To decrease the iteration 
progress of particle velocities, the particle moving into the 
nearest the optimum are localized by the PSOCF method 
updated the original velocity equation. 

The modified equation for PSOCF adds the constriction 
factor parameter, x, to the velocity update equation: 

Vu = xWid + Ci (pBest - Xu ) x rand1 + 
C2 (gBest -Xid)x rand2] (23) 

Where: 
Vu = particle velocity. 
Xid = particle position. 
pBest «• particle's best fitness so far. 
gBest = best solution achieved by the swarm so far. 
C, = cognition learning rate 
Ci = social learning rate. 
randi, randi = random numbers between 0 and 1. 

/ is calculated using: 

X = 
|2-»>-vV2-4<ip| 

(24) 

where: 

= C1+C2,<p>4 (25) 

After new velocities have been calculated, Xuls updated: 

Xid — %id + n (26) 

Parameter vMax is the maximum velocity required and it 
functioning as a constraint to prevent velocity explosion [19, 
23]. Generally, vMax is set as the dynamic range of values 
[24]. 

By using parameters oixMin and xMax , the value of Xu 
may be bounded to ignore solutions outside an acceptable 
range [17]. Whenever Xid violates xMin or xMax, they are 
artificially brought back to their nearest side constraint. 
Additionally, to discourage any more searches in that 
direction [17], the velocity will set to 0 each time this occurs. 

D. BPSO for Model Structure Selection 
Models of binary decisions [25-27] to solve binary 

problems the PSO algorithm represents particle positions as 
"probabilities of change" rather than the actual solution. In 
other meaning is the probability that an individual's decision 
will be yes or no, true or false, or some other binary decision 
is a function of personal and social factor. To make the 
statement more clearly, it can be transform into the values of 
the particles indicated. The probability of the bit is given a 
binary string of x bits, it to change from its current state to 
another (bit flip). For example the indicated value, the bit will 
change from its current state (from 0 to 1 or 1 to 0) when a 
particle value higher than 0.5. Else, the bit will maintain its 
current state if the particle value is less than 0.5. 

The application of the BPSO for the system identification 
problem is described - The system identification problem can 
be defined as a linear least squares problem: 

P6+ e = y (27) 

Where, P is a nxm regressor matrix, 6 is a i x l 
coefficient vector, and y is the n x 1 vector of actual 
observations. P is arranged such that the columns represent 
the m lagged regressors. £ is the white noise residuals. 

Based on Eq. (22), the regressor matrix P, is a matrix of 
combinations of lagged input and output terms. A binary 
string of length l x m is defined, so that each regressor 
column has a bit assigned to it. The initial value of the binary 
string can be randomly defined during initialization. A value 
of 1 indicates that the column will be considered in the 
construction of the reduced regressor matrix, while the value 
of 0 indicates that the regressor column is ignored. 



In the swarm, the particles each carry a Ixm vector if 
solutions xid This vector contains the "probabilities of change" 
defined earlier. These values change during optimization and 
alter which regressor column is selected. 

The linear least squares solution for the reduced regressor 
matrix, Preduced can m e n be estimated based on a by-product 
of the error reduction ratio (ERR) method described in [11]. 
For the selected regressors, the coefficients (8) was estimated 
by using the Householder-based QR decomposition. 

Testing Set - Inputs 

The QR decomposition of matrix is: 

Preduced = V« 

Let: 

g = QTy 

Such that: 

R0 = g 

(28) 

(29) 

(30) 

Solving equation in (30) yields the solutions for the linear 
least squares problem in Eq. (27). 

III.METHODOLOGY 

K Hardware Description 
To make all the experimental testing, it was run by using 

the Personal Computer (PC) computer: Acer Aspire model 
5551 with process by Intel Centrino Duo Central Processing 
Unit (CPU) (running at 1.66 GHz) with 2 GB of Random 
Access Memory (RAM). Microsoft Windows 7 Home 
Premium (64-bit) was installed as the operating system. The 
all program were implemented and simulated using MATLAB 
version 7.8.0.347 (R2009a). 

1) Dataset Description 

The NARX model was created based on time series data of 
a Matlab Simulink model based on the transfer function 
described in Section II.A, and 5,000 test cases were simulated. 
The dataset was then divided equally into training and testing 
set. The training and validation sets are shown in Fig. 5. Prior 
to training the NARX model the dataset was rescaled so that 
the input and output data resides between 0 and 1. 

Training Set - Inputs 

1000 1500 
Time 

Training Set - Outputs 

? < 

1000 1500 
Time 

Testing Set - Outputs 

Fig. 6 Inputs and outputs for testing set. 

F. PSO Parameters Description 
The parameter settings that used for PSOCF will explain 

details in this section which the main objective of PSOCF is to 
select which one of regressors to include in the regression 
matrix until the Normalized Sum Squared Error (NSSE) value 
reaches 0. This NSSE fitness function and objective were 
chosen similar to the work by [21]. 

During the search, xMin and xMax are used to constrain the 
movement of particles and it was described in Section H.C. 
Respectively, the values ofxMin mdxMax were set to 0 and 1. 
For each of iteration it was controlled by using the values of 
vMin and vMax and it for the maximum movement of the 
particles. Usually, these values are set to the dynamic range of 
the variable [24]. Therefore, the dynamic range of vMin and 
vMax were respectively set to -1 (when Vid moves from 1 to 0) 
and 1 (when V,j moves from 0 to 1), since it xMin and xMax 
was set to 0 and 1, respectively. 

Additionally, they were artificially brought back to the side 
constraints (JCMW and xMax) if at any time Xid violates the 
xMin and xMax constraints. To discourage any more searches 
in that direction ,¥# was set to 0 [17] if this happens. From 
MATLAB's pseudo-random number generator, the random 
parameters (randl and rand!) were generated using the 
Mersenne-Twister algorithm (MTA) [28]. 

The values of C/ and C2 differ according to the particle 
swarm optimization algorithm. For PSOCF, the values of C] 
and C2 were both set to 2.05 [26] (to avoid violating the rule 
in [15]). 

The value of x is a function of Cj and C2 for PSOCF (see 
[15]). The value of % is 0.7290 throughout the optimization 
course and it was based on the values of C, and C» 

G. NARX Parameters Description 
At this section, the parameters used in the NARX model 

throughout the experiments will describe. Usually, the NARX 
model is similar to the model used. A short description is 
presented here. The "number of delayed signals used as 
regressors" will called the NARX model lags [29]. 

In [21], by using Lipschitz Analysis (LA), the lag spaces 
for the inputs and outputs were both determined to be 2. 
Therefore, the maximum lag space was set to be 2 for input 
and output data 

Fig.5 Inputs and outputs for training set 



The information criterion used to guide the structure 
selection process is the Minimum Descriptor Length (MDL) 
criterion [1 ]. The MDL is given by: 

VMDL = (l + log(W)£) VN(,1,Z») (31) 

Where; 
VMM= MDL information extension 
N = Length of data 
d = number of regressors selected 
VN (1,2W)= mean squared error for residuals 

H. Swarm Initialization using MTA 

PSO convergence is sensitive to its initial particles values. 
The selecting of optimal number of particles may be difficult 
since the convergence is unpredictable and the particles are 
initialized randomly before optimization. To test the 
effectiveness of the proposed method, each experiment was 
repeated 5 times with different initialization values for each 
particle by using a pseudo-random number generator called 
the Mersenne-Twister algorithm (MTA). 

In MTA, the sequence of random numbers generated is 
determined by the internal state of the generator. Setting the 
generator to different states leads to unique computations and 
outcomes for each state. The unique computations result in 
the generation of unique series of random numbers based on 
the state. To ensure repeatability of the experiments, the 
generator state is set to some fixed value each time the 
optimization executes to ensure that the same set of random 
numbers are generated. The initial seed from each test is 
shown in Table I. 

TABLEI 
STARTING PSEUDO-RANDOM SEEDS USED FOR EACH PARTICLE TEST 

Test Initial Seed 

1 0 
2 50,000 
3 100,000 

4 150,000 
5 200,000 

The convergence of the BPSO algorithm was tested over 
several different initial states (Table 1). The initial MTA state 
(for the first test) starts from 0 and increased by 50,000 for the 
next test For example, in the first test, the initial MTA state 
was set to 0. For the next test, the initial MTA state was set to 
50,000, and so on, until the 5* test This was done to measure 
the convergence with different initial particle values. The 
swarm size was set to 50, which was sufficient based on 
preliminary tests. The maximum iteration for the BPSO 
algorithm was 100, while all bits in the initial binary string 
were set to zero. 

IV. RESULTS & DISCUSSION 

The output of our MATLAB program is shown in Fig. 7 

Model: narx 
Dataset: asmadi 
Original Model: DC Motor 
Criterion: mdl 
Orthogonalization: house 
Norm (Training Set): 1.3541 
SSE (Training Set): 1.8337 
MSE (Training Set): 0.00073495 
Norm (Testing Set): 1.3342 
SSE (Testing Set): 1.78 
MSE (Testing Set): 0.00071341 

Regressors 

u-1 
u-2 
V-l 

Value 

2.3292 
0.038906 
0.49114 

Output of identification program. 

The NARX identification result is in Eq. (32). 

y(£) • 2.3292u(t - 1) + 0.0389u(t - 2) + 
0.4911y(t - 1 ) + 
1.0616 x 10-5u(t - l)u(t - 2) (32) 

The indicating of a good model fit is by an accurate 
simulation result coupled with small, uncorrelated random 
residuals. In Fig. 8 and Fig. 9, it has shown the one-step-ahead 
prediction results. The model fit is very good by indicated the 
closeness of the identified signal and the output signal for both 
the training and testing sets and all it will can be seen from the 
results. The sum-squared error (SSE) and mean-squared error 
(MSE) is shown in Table II. Both the values of SSE and MSE 
were very small, indicating a good fit. 

TABLE II 
STARTING PSEUDO-RANDOM SEEDS USED FOR EACH PARTICLE TEST 

Test Training Set Testing Set 

SSE 1.8309 1.7761 
MSE 7.3382x10"" 7.U85X10-4 

Prediction Results - Training Dais 
£0, . . -r-

, 1 1 1 » 1 1 

0 SCO 1000 1S00 2000 2500 
Time 

Fig. 8 Identification result for training set. Solid line indicates actual 
(observed) output; dotted line indicates NARX model (predicted) output. 



prediction Results -Testing Data 

Fig.9 Identification result for testing set. Solid line indicates actual (observed) 
output; dotted line indicates NARX model (predicted) output 

The residual plots for the training and validation sets are 
shown in Fig. 10 and Fig. 11. The residuals for both cases 
were very small, indicating very small difference between the 
predicted and actual observations. 

Residuals - Training Data 
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Fig.12. Auto-correlation ofresiduals for training set, solid line indicates 95% 
confidence limits. 
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Fig. 13. Cross-correlation between residuals and input of training set, solid 
line indicates 95% confidence limits. 

Fig.10. Residual plot for training set 

Residuals - Testing Data 
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Fig. 14. Auto-correlation ofresiduals for testing set solid line indicates 95% 
confidence limits. 

Fig. 11. Residual plot for testing set. 

A good model fit would leave only white-noise residuals 
behind and it will determine from Eq. (32). The 
autocorrelation test on the residuals was performed to test the 
fit in terms of the residuals, and cross-correlation between the 
residuals and the inputs. In Fig. 12 to Fig. 13, the results of the 
correlation tests are shown: 
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V. CONCLUSIONS 

A IX) motor model by [13] has been identified using the 
NARX method. The model structure selection process was 
done using the binary PSO. One step ahead and residual tests 
indicate that the model is valid, and the suitability of the PSO 
algoritm to perform model structure selection in NARX 
models. 
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Fig. 15. Cross-correlation between residuals and input of testing set, solid line 
indicates 95% confidence limits. 

By distribution of Gaussian, white noise also has a distinct 
characteristic. In Fig. 14 and Fig. 15 the residual histograms 
are shown and clearly show the Gaussian distribution. 

700 

€00 

500 

j " 400 

1 
XT 
S. 300 

200 

100 

Histogram of Residuals - Training Set 

-

• 

• 

' 
_ 

j 

11 -0 08 -0 06 - 0 0 4 - 0 02 0 002 004 006 0.08 0 1 
Range 

Fig. 16. Histogram of residuals for training set. 
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Fig. 17. Histogram of residuals for testing set. 
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