Universiti Teknologi MARA

Medicinal Herb Recognition Using Convolutional Neural Network (CNN)

Muhammad Syuhaiman Bin Shaari

Thesis is submitted in fulfilment of the requirements for Bachelor of Computer Science (Hons.) College of Computing, Informatics and Mathematics

January 2024

ACKNOWLEDGEMENT

I give praise and appreciation to Allah for His sovereignty and the various talents He has bestowed upon me, since I was able to complete this study in the allocated time. I would want to thank my adviser first and foremost for this work. would not have been possible without the assistance and guidance of Sir Roger Canda, who not only gave his time and effort to help me complete this study, but also aided me along the way. In addition, I would like to thank my lecturer for CSP 600/CSP650, Madam Ummu Fatihah binti Mohd Bahrin, for sharing her expertise with me, supporting me, and inspiring me during the whole semester.

My family members have been the most significant people in my pursuit of this undertaking. A particular thank you should go out to my cherished parents for their unwavering support—both psychologically and physically—as well as for their encouragement and, when I most needed it, their financial aid. I am appreciative to everyone I have had the pleasure of working with on this endeavour. To complete the final year project, I would like to thank my favourite classmates for their helpful assistance and emotional support.

ABSTRACT

The results of a study on identifying therapeutic herbs with convolutional neural networks (CNNs) model are presented in this publication. The goal of the project is to create a mobile app that could recognize several kinds of therapeutic herbs from photos. The proposed system was developed in 3 phases which are the preliminary phase, the design and implementation phase, and the evaluation phase. The study utilized a dataset with 5 classes of medicinal herbs that contain 100 to 122 range of leaf images. The pre-trained model, VGG16 is used as the base model because this project applies transfer learning. The app is designed to be an Android mobile app by using Android Studio and Visual Studio code. The model is evaluated by using 3 ratios of train-test split performance which are 80:20, 70:30, and 60:40. With just 4 incorrectly categorized photos, the 70:30 ratio produces the lowest misclassification rate. Performance graphs for 70:30 and 80:20 ratios indicate consistent declines in training and validation loss, with 70:30 closely trailing training loss. All ratios see a steady rise in training accuracy, with 70:30 yielding the highest. Validation accuracy reaches its maximum at 80:20, while 70:30 is not far behind. All things considered, the 70:30 ratio is the best option for model finalization since it achieves a balance between precision, applicability, and low misclassification.

TABLE OF CONTENTS

CONTENT	PAGE
SUPERVISOR APPROVAL	3
STUDENT DECLARATION	4
ACKNOWLEDGEMENT	5
ABSTRACT	6
LIST OF TABLES	10
LIST OF FIGURES	11
CHAPTER ONE: INTRODUCTION	13
1.1 Background of the study	13
1.2 Problem Statement	14
1.3 Objective	15
1.4 Scope	15
1.5 Project significance	16
1.6 Research Framework	17
1.7 Conclusion	19
CHAPTER TWO: LITERATURE REVIEW	20
2.1 Artificial Intelligence	20
2.2 Medicinal Herb Recognition	21
2.3 Algorithm	23

2.3.1 What is CNN and How Does it Work	23
2.3.2 Advantages and Disadvantages of Convolutional Neural Network (C	CNN)
	24
2.3.3 What is Support Vector Machine and How Does it Work	25
2.3.4 Advantages and Disadvantages Support Vector Machine (SVM)	26
2.3.5 What is Random Forest and How Does it Work	27
2.3.6 Advantages and Disadvantages Random Forest	27
2.4 Implementation of Convolutional Neural Network Algorithm in Various Problem	29
2.5 Similar Works	39
2.6 Implication of Literature Review	55
2.7 Conclusion	55
CHAPTER THREE: METHODOLOGY	57
3.1 Overview of Research Framework Methodology	57
3.1.1 Detailed Research Methodology	57
3.2 Preliminary Study	62
3.2.1 Literature Study	62
3.2.2 Data Collection	63
3.2.3 Data Pre-Processing	64
3.3 Design and Implementation Phase	65
3.3.1 Prototype Architecture	65
3.3.2 Flowchart	66
3.3.3 Interface Design	67
3.3.4 Pseudocode of Selected Algorithm	69
3.3.5 Prototype Implementation	69
3.4 Performance Evaluation	70
3.4.1 Confusion Matrix	70
3.4.1.1 Accuracy, Precision, Recall and F1 Score	71
3.4.2 Plotting	73
3.5 Gantt Chart	73
3.6 Conclusion	75
CHAPTER FOUR: RESULT AND FINDINGS	76