Universiti Teknologi MARA

Image Analysing to Differentiate Human Users or Bots Using Convolutional Neural Network (CNN)

MUHAMAD ANIF IKMAL BIN RUSDI

Thesis submitted in fulfilment of the requirements for Bachelor of Computer Science (Hons.) College Of Computing, Informatics & Media

JULY 2023

ACKNOWLEDGEMENT

Alhamdulillah, praises and thank you to Allah because of His Almighty and His utmost blessings, I was able to complete this research within the designated timeline. I would like to extend my sincerest thanks to my supervisor, Sir Muhammad Atif Bin Ramlan for her guidance and support throughout the project journey. Without her, I would not have been able to complete this project with success.

Without the participation and cooperation of so many people, some of whose names may not be numerated, Final Report CSP600 could not have been completed. I truly appreciate and gladly accept their contributions. But I also want to express my sincere gratitude to my dear lecturer, Madam Ummu Fatihah binti Mohd Bahrim, lecturer of Project Formulation (CSP600), for allowing me the chance to do research and for her crucial advice throughout my final report. I have been greatly inspired by her dynamism, vision, genuineness, and drive.

My parents and my friends' love, prayers, care, and sacrifices in helping to educate and prepare me for the future have made me incredibly grateful. I also like to thank my siblings for their help and helpful prayers. Finally, I would want to express my gratitude to everyone who helped me, directly or indirectly, to finish the final report before I was able to finish the project.

ABSTRACT

In today's digital landscape, telling the difference between human users and bots has become tricky. To tackle this issue, research focuses on creating a system that uses image analysis to identify and classify entities as either human users or bots. The approach involves collecting a dataset of images, processing the data, and training a model—like a Convolutional Neural Network (CNN)—to accurately distinguish between the two. The study demonstrates the effectiveness of using image analysis, particularly CNNs, in achieving high accuracy rates across various scenarios. The main tasks include gathering data, implementing image analysis techniques, training the model, and evaluating performance. The results emphasize the potential of image analysis-based systems for reliable differentiation, contributing to improved online security measures and prevention of malicious activities. This research aims to provide a straightforward solution to the challenge of distinguishing between human users and bots, with the ultimate goal of enhancing online security, particularly in the context of cybersecurity in Malaysia.

TABLE OF CONTENTS

CONTENT

PAGE

TABLE OF CONTENTS					
LIST OF FIGURES					
LIST	LIST OF TABLES				
СНА	CHAPTER 1				
INTRODUCTION					
1.1	Background of Study	6			
1.2	Problem Statement	7			
1.3	Research Objectives	9			
1.4	Project Scope	9			
1.5	Project Significance	10			
1.6	Overview of Research Framework	11			
1.7	Conclusion	11			
CHAPTER 2 1					
LITERATURE REVIEW					
2.1	Deep Learning	12			
	2.1.1 Applications for Deep Learning in Image Recognition	13			
2.2	Analyzing to differentiate human users or bots using CNN Based on Image	14			
2.3	Convolutional Neural Network Algorithm	15			
	2.3.1 CNN and How Does It Works?	16			
	2.3.2 Types of Convolutional Network	17			
	2.3.3 Advantages and Disadvantages of Convolutional Neural Network	19			
2.4	Implementation of Convolutional Neural Network Algorithm in Various				
Problem 2					
2.5	Similar Works	31			
2.6	The Implication of Literature Review	42			

2.7	Conclusion		43	
CHA	CHAPTER 3			
METHODOLODY				
3.1	Overview of	Research Methodology	44	
3.1.1		Detailed of Research Framework	44	
3.2	Preliminary F	Phase	51	
	3.2.1 Literatu	re Study	51	
	3.2.2 Data Pr	52		
	3.2.2.1	Data Collection	52	
	3.2.2.2	Data Cleaning	53	
3.3	Design Phase		54	
3.3.1		Prototype Architecture	54	
3.3.2		Flowchart	55	
3.3.3		Interface Design	56	
3.3.4		Pseudocode of Selected Algorithm	57	
3.4	Development		57	
3.5	Performance	Evaluation	58	
Acci	58			
3.5	Documentation			
3.6	Conclusion		61	
CHAPTER 4				
RES	62			
4.1		Conceptual Framework	62	
4.2	Experiment S	Settings	63	
4.3	Training with	Different Epoch	64	
4.3.1		Experiment 1: Training 80% testing 20%	64	
	4.3.1.1	Training with 20 epochs	64	
	4.3.1.2	Training with 30 epochs	66	
	4.3.1.3	Training with 40 epochs	67	
4.3.2		Summary of Experiment 1	68	
4.3.3		Experiment 2: Training 70% Testing 30%	70	
	4.3.3.1	Training with 20 epochs	70	
	4.3.3.2	Training with 30 epochs	71	