Universiti Teknologi MARA

Sentiment Analysis of Public Perception on AI Chatbots Using Support Vector Machine (SVM) Algorithm

Tuan Nur Azlina Binti Tuan Ibrahim

Thesis submitted in fulfilment of the requirements for Bachelor of Computer Science (Hons.) College of Computing, Informatics & Mathematics

January 2024

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious, the Most Merciful. Praises to Allah, the Almighty, for granting me the opportunity to pursue higher education.

My sincere appreciation to my supervisor, Dr. P. Siva Shamala, for her patience, invaluable guidance, and efforts in steering me through the challenges of this research project. Special thanks to Madam Ummu Fatihah Mohd Bahrin and Miss Nik Marsyahariani Nik Daud for their insightful lessons and comment throughout this project. All of their encouragement has significantly contributed to the development of my understanding in the field.

I am deeply indebted to my mother Misssaroh, whose prayers and unwavering support have been my pillars of strength. Without her love and encouragement, reaching this milestone would have been an impossible challenge. Thank you to my family and friends, you have added vibrant colors to the canvas of my academic years.

Lastly, a heartfelt thank you to myself, for the perseverance that led to the completion of this thesis. I am grateful for the lessons learned and the growth achieved. This achievement are the collective efforts of a supportive network, and kind people around me. For that, I am truly thankful and again thank you everyone.

ABSTRACT

This study investigates public sentiment towards AI chatbots, recognizing the critical importance of understanding public perceptions for effective integration. Facing challenges with existing methods, the Support Vector Machine (SVM) algorithm is employed for its proficiency in handling textual data. Analyzing 11,430 tweets through a systematic approach involving literature review, data preprocessing, and feature extraction, the SVM model's high accuracy of 91.27% in categorizing sentiments is showcased. The results provide valuable insights into positive, negative, and neutral perceptions, addressing limitations through strategic adaptations. The research contributes a comprehensive exploration of sentiment analysis, combining technical expertise with societal insights. The SVM-based sentiment analyzer offers a user-friendly tool bridging complex algorithms and practical applications. The study lays the groundwork for future research, suggesting avenues for expanding data resources, exploring advanced models, and enhancing user interfaces. Ultimately, it advances understanding of public sentiments towards AI chatbots, facilitating improved applications and societal integration.

TABLE OF CONTENTS

CONTENT

SUPERVISOR APPROVAL	iii
STUDENT DECLARATION	iv
ACKNOWLEDGEMENT	v
ABSTRACT	vi
LIST OF FIGURES	X
LIST OF TABLES	xii
LIST OF ABBREVIATIONS	xiii
CHAPTER ONE: INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	3
1.3 Objective	4
1.4 Project Scope	5
1.5 Project Significance	5
1.6 Overview of Research Framework	6
1.7 Conclusion	7
CHAPTER TWO: LITERATURE REVIEW	8
2.1 Sentiment Analysis	8
2.2 Support Vector Machine (SVM) Algorithm	13
2.3 AI Chatbots and Public Perceptions	22
2.3.1 Introduction to AI Chatbots	22
2.3.2 Public Perception of AI Chatbots	25
2.3.3 Factors Affecting Public Perception of AI Chatbots	25
2.3.4 Implications of Public Perception of AI Chatbots	26
2.4 Similar Application	27
2.5 Implication of Literature Review	30
2.6 Conclusion	31

CHAPTER THREE: PROJECT METHODOLOGY	32
3.1 Overview of Research Framework Methodology	32
3.2 Preliminary study	36
3.2.1 Problem statement identification	36
3.2.2 Knowledge acquisition	36
3.3 Data collection and preparation	37
3.3.1 Data collection	37
3.3.2 Data Preprocessing	40
3.4 Design	44
3.4.1 Project Flow Process	44
3.4.2 Model Conceptual Framework	46
3.4.3 User Interface of The System Design	48
3.5 Development	49
3.5.1 System Development Requirement	49
3.5.2 Model Development	50
3.6 Testing and Evaluation	55
3.6.1 Cross fold validation	55
3.6.2 Evaluation	56
3.7 Conclusion	57
CHAPTER FOUR: RESULT AND FINDINGS	58
4.1 Data Description	58
4.2 Data Pre-Processing Results	59
4.3 Feature Extraction	61
4.4 SVM Implementation	63
4.4.1 TF-IDF in SVM Modeling	63
4.4.2 Hyperparameter Tuning	64
4.4.3 Consistency with random_state in SVM Model Optimization	67
4.5 Evaluation Result	68
4.5.1 Custom SVM Implementation	68
4.5.2 Scikit-learn Approach	70
4.6 Word Cloud Analysis	74
4.7 Prototype of User Interface	77