UNIVERSITI TEKNOLOGI MARA

COPPER, LEAD AND DIPHENYLAMINE IN GUNSHOT RESIDUE ANALYSIS USING SCREEN PRINTED CARBON ELECTRODE (SPCE) AND GOLD COATED SPCE

NURUL 'AFIQAH HASHIMAH BINTI MOHD HASHIM

Thesis submitted in fulfillment of the requirements for the degree of Master of Science (Chemistry)

Faculty of Applied Science

October 2019

ABSTRACT

Electrochemical analysis on screen printed carbon electrode (SPCE) is relatively simple, rapid and reliable tool inorganic compound identification such as copper in gunshot residue (GSR). SPCE is specially designed to cope with microvolumes of sample such as GSR sample due to its potential for miniaturization and facility of automation. It would be beneficial for the quantification of copper in GSR for a forensic analyst in the fastest way at the discharging area. The coating of gold on SPCE enhances the voltammetric performances towards detection of copper, lead and diphenylamine. The coupling of voltammetry with gold coated SPCEs allows the onsite preliminary test and improves the conventional method which capable to analyze GSR in the laboratory in the long period and have a risk of sample loss. The gold coated SPCE was swabbed directly on the shooter's arm immediately after discharging a firearm and the sample SPCE was analyzed using cyclic voltammetric method. The electrochemical performances of copper, lead and diphenylamine on bare SPCE and gold coated SPCE using voltammetric method were studied. Gold coated SPCE was characterized and optimized before field work. The voltammetric sensor responded to a series of 1 ppm to 100 ppm of copper solution shows gold coated SPCE increased the percentage of reproducibility about 5 % to 17 % in aspect of current density compared to bare SPCE due to their large effective surface area, effective catalysis and fast mass transport. GSR analysis was performed on Glock, Rifle Stryer AUG-A1 and Rifle Colt M16-A1 using cyclic voltammetry and Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) methods. The results obtained from cyclic voltammetric analysis show sopper concentrations detected in Glock, Rifle Stryer AUG-A1 and Rifle Colt M16-A1 were 0.680 ppm, 1.349 ppm and 0.707 ppm respectively while the amounts of copper detected by ICP-OES analysis were 0.724 ppm (Glock), 1.432 ppm (Rifle Stryer AUG-A1) and 0.748 ppm (Rifle Colt M16-A1). The paired Student's t-test indicated that there was no significant difference between the results obtained from both methods at the 94 % confidence level. A p-value of less than 0.05 was considered significant. Therefore, it can be concluded that the proposed method is reliable and can be successfully applied to the copper determination in GSR analysis.

ACKNOWLEDGEMENT

First of all, I am grateful to The Almighty God, the author of knowledge and wisdom, for his countless love for establishing me to complete this thesis.

It is a genuine pleasure to express my deep sense of thanks and gratitude to my mentor, philosopher and guide, Assoc. Prof. Dr. Zainiharyati Mohd Zain, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia. Her dedication and keen interest above all her overwhelming attitude to help her students had been solely and mainly responsible for encouraging me to complete my work. Her timely advice, meticulous scrutiny, scholarly advice and scientific approach have helped me to a very great extent to accomplish this task.

I owe a deep sense of gratitude to Dr. Mohd Zuli Jaafar for his valuable guidance, keen interest and encouragement at various stages of my research. His prompt inspirations, timely suggestions with kindness, enthusiasm and dynamism have enabled me to complete my thesis.

I would like to thank the Ministry of Higher Education through the Fundamental Research Grant Scheme (FRGS) to support this research, Universiti Teknologi MARA (UiTM) and Faculty of Applied Sciences.

My appreciation goes to En. Firdaus and all the team of Science and Technology Research Institute for Defense (STRIDE) at Batu Arang, Selangor who provided the facilities and assistance during sampling and for their kind help and co-operation throughout my study period.

The completion of this undertaking could not have been possible without the participation and assistance of so many people whose names may not all be enumerated. Their contributions are sincerely appreciated and gratefully acknowledged.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	xv
CHAPTER ONE: INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	2
1.3 Objectives	3
1.4 Significance of Study	3
CHAPTER TWO: LITERATURE REVIEW	4
2.1 Gunshot Residue	4
2.2 Electrochemistry	7
2.2.1 Mass Transport	9
2.2.2 Supporting Electrolyte	10
2.3 Screen Printed Electrode	10
2.3.1 Modification of Working Electrode	11
2.4 GSR Sampling Collection	12
2.5 Methods of GSR Analysis	14
2.5.1 Separation Instrumentation of GSR	15
2.5.2 Spectroscopy Analysis	16

	2.5.3 Microscopy Analysis	19
	2.5.2 Electrochemical Technique	22
26	Electrochemical Analysis of GSR	25
2.0	Electrochemical Analysis of OSK	23
СН	APTER THREE: RESEARCH METHODOLOGY	27
3.1	Introduction	27
3.2	Materials	27
3.3	Instrumentation	28
3.4	Preparation of Standards	30
	3.4.1 Standards of Copper and Lead	30
	3.4.2 Standard of Diphenylamine	30
3.5	Cyclic Voltammetry Procedure for Determination of Copper, Lead and	30
	Diphenylamine	
	3.5.1 Determination of Diffusion Coefficient by Randles-Sevcik Equation	31
3.6	GSR Sampling Collection	32
3.7	GSR Analysis	35
	3.7.1 GSR Analysis by Cyclic Voltammetry Technique	35
	3.7.2 GSR Analysis by Inductive Coupled Plasma-Optical Emission	35
	Spectroscopy (ICP-OES) Technique	
СН	APTER FOUR: RESULTS AND DISCUSSIONS	36
4.1	Determination of Copper	36
	4.1.1 Effect of Copper Concentration	37
	4.1.2 Effect of pH Values in Copper Solution	40
	4.1.3 Effect of Voltammetric Scan Rate	42
4.2	Determination of Lead	44
	4.2.1 Effect of Lead Concentration	46
	4.2.2 Effect of pH Values in Lead Solution	48
	4.2.3 Effect of Voltammetric Scan Rate	50
4.3	Determination of Diphenylamine	51
	4.3.1 Effect of Diphenylamine Concentration	54
	4.3.2 Effect of pH Values in Diphenylamine Solution	56
	4.3.3 Effect of Voltammetric Scan Rate	58