Universiti Teknologi MARA

Rabbit Breed Classification Using CNN

AISHAH NABILA BINTI MOHD ZAID

Thesis submitted in fulfilment of the requirements for Bachelor of Computer Science (Hons) College of Computing, Informatics and Mathematics

January 2024

ACKNOWLEDGEMENT

Alhamdulillah, praises and thanks to Allah because of His Almighty and His utmost blessings, I was able to finish this research within the time duration give. I want to start by sincerely thanking my supervisor, Ts. Dr. Rajeswari A/P Raju, for her important advice, constant support, and perceptive criticism throughout this project. My research's course has been greatly influenced by her knowledge and mentoring.

My academic career has been greatly enriched by the supportive learning atmosphere and resources provided by my lecturer, Madam Ummu Fatihah Binti Mohd Bahrin. Without her guidance I might not be able to finish this research. I owe a debt of gratitude to my friends and classmates who supported me, shared their wisdom with me, and offered help when I needed it. This difficult voyage was made more delightful by your friendship.

I want to express my gratitude to my family for their consistent support, patience, and inspiration during my academic endeavours. Finally, I want to express my gratitude to all the people who kindly took part in the surveys, interviews, and data collection for this study. Your readiness to participate in this endeavour was essential to its accomplishment.

Without the combined efforts of all these people and institutions, this initiative would not have been feasible. Thank you for being a part of this journey.

ABSTRACT

Rabbit breed classification poses challenges due to the diverse physical characteristics and colour patterns, complicating differentiation, especially for untrained individuals. Misclassification can detrimentally affect mating, genetic selection, and rabbit health. Thus, developing an accurate classification system is crucial for the breeding and farming industry. This project aims to study the CNN algorithm's efficacy in rabbit breed classification, develop a CNN-based prototype, and evaluate its accuracy. Four widely raised rabbit breeds in Malaysia-Californian, Holland Lop, Lionhead, and New Zealand—are selected for classification due to their distinct characteristics. The research methodology encompasses preliminary study, design and implementation, and evaluation phases. Literature review, knowledge acquisition, and dataset collection inform algorithm selection and dataset validation. The design and implementation phase focus on prototype development, while the evaluation phase assesses classification performance. Results demonstrate the CNN algorithm's potential for achieving high accuracy, with an average accuracy of 95%. This study underscores the CNN algorithm's viability for accurate rabbit breed identification. It concludes by recommending further research into its application in other animal classification contexts, highlighting broader implications.

TABLE OF CONTENTS

CONTENT	PAGE
SUPERVISOR APPROVAL	3
STUDENT DECLARATION	4
ACKNOWLEDGEMENT	5
ABSTRACT	6
LIST OF FIGURES	V
LIST OF TABLES	vii

CHAPTER ONE: INTRODUCTION

1.1 Background of Study	1
1.2 Problem Statement	2
1.3 Objective	3
1.4 Project Scope	3
1.5 Project Significance	4
1.5.1 Benefits for Rabbit Breeders	4
1.5.2 Educational Impact for Veterinary and Zoology Students	5
1.5.3 Efficiency for Veterinarians	5
1.6 Overview of Research Framework	6
1.7 Conclusion	7

CHAPTER TWO: LITERATURE REVIEW

2.1 Image Processing	
----------------------	--

8

2.2 Image Classification	9
2.2.1 Rabbit Breed Classification	10
2.3 Convolutional Neural Network Algorithm	12
2.3.1 Introduction to Convolutional Neural Network	12
2.3.2 How Convolutional Neural Network Works	13
2.3.3 Uses of Convolutional Neural Network	14
2.3.4 Advantages and Disadvantages of Convolutional Neural Network	16
2.3.5 Implementation of Convolutional Neural Networks in Various Pro	blem
	18
2.4 Similar Works	31
2.5 The Implications of Literature Review	45
2.6 Conclusion	46

CHAPTER THREE: RESEARCH METHODOLOGY

3.1 Overview of Research Framework	47
3.1.1 Details of Research Methodology Framework	48
3.2 Preliminary Study	51
3.2.1 Literature Review	51
3.2.2 Knowledge Acquisition	52
3.2.3 Data Collection	53
3.2.3.1 Data Pre-processing	54
3.3 Design and Development Phase	55
3.3.1 System Architecture	55
3.3.2 Flowchart	56
3.3.3 Pseudocode	57
3.3.4 Proposed Graphical User Interface	59
3.3.5 System Implementation	59
11	