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Abstract—Edge devices play an ever-increasing role as to reduce 
latency, improve efficiency and adapt simplicity. However, their 
lower processing capabilities compared to traditional setup means 
that their usage are also limited. This research explores the 
possibility of implementing both wake word and speech 
recognition on an edge device. The proposed wake word system, 
which is for voice activation, is developed based on the LSTM 
Neural Network model. The model is trained, modelled, and 
evaluated to respond to the wake word of “Hey SellTron”. As for 
the speech recognition (voice command) system, Google Speech 
API was selected to recognize standard directional commands 
(left, right, forwards, backwards), as well as the new conceptual 
locational commands (“go to kitchen”, “go to bedroom”, etc.). To 
prove the feasibility of the developed system, these two features 
were integrated into an edge device on a mobile platform; 
representing a conceptual mini wheelchair ‘prototype’ due to 
project constraints. Evaluations showed that the prototype was 
able to activate and respond to voice commands correctly with 
over 80% accuracy in low ambient noise (<50dB).  
 
Index Terms—Voice activated wheelchair, wake word, speech 
recognition, LSTM, Google Speech API 
 

I. THE WHEELCHAIR AS AN EDGE DEVICE 
Current commercial wheelchairs come in two modes: manual 

or electric. The manual wheelchairs operated by the hands and 
upper body can cause shoulder and palm injuries due to the 

repetitive pushing motions needed to propel it. According to 
[1], research estimate that upwards of 70 – 100% of wheelchair 
users will experience injuries and varying degrees of pain in 
their upper body region after usage; with the three primary 
regions being the wrist with 40 – 66% likelihood, the elbow 
with 5 – 16%, and the shoulder with 30 – 60%. In addition, 
injuries due to blisters, abrasions, and lacerations occurred 18% 
of the time, as well as carpal tunnel syndrome which has a 27 – 
90% chance of occurrence [2]. 

The obvious solution to manual is the electrically powered 
wheelchair, which is normally operated using joysticks or 
buttons by hand. However, the drawbacks are mechanical in 
nature due to the factor of wear and tear of moving mechanical 
parts especially at the controller. Besides, maneuvering also 
requires a reasonable amount of awareness and motor skills. A 
hand’s free solution could potentially address some of the issues 
by leveraging on the edge device capabilities.  

Voice-controlled handsfree wheelchair is slowly but looks 
surely becoming a real possibility as speech recognition and 
detection technology have made major progress leaps in the 
past decade, even more so with the public release of ChatGPT 
and similar large language models (LLM). Looking slightly 
back, sparks of interest in wheelchair with voice recognition 
feature are already evident. 

An instance of this can be seen in the implementation done 
by Vijay, which was achieved by pairing the Arduino platform 
with the HM2007 voice recognition module [3]. In a similar 
manner, Uchid also implemented a similar concept for the 
system by pairing an Arduino Uno R3 with a Greetech Voice 
Recognition Module V.3 [4]. Tan also went with the same 
route, by pairing a voice recognition module to the Atmega 
328P Arduino microcontroller [5]. However, Tan’s approach 
differs slightly, as the voice recognition module’s connection to 
the Arduino microcontroller was done via Bluetooth, using the 
HC-05 Bluetooth Module. Hence, this evidently shows the 
usage possibility of pairing low-powered edge devices such as 
the Arduino with voice recognition modules for the voice-
controlled wheelchair. 

Further improvement can be seen from the introduction of 
the Internet of Things (IoT) to the wheelchairs. For example, 
Malik utilized the Google Web Service Application 
Programming Interface (API) for his Arduino Uno based voice-
controlled wheelchair [6]. This API was integrated onto an 
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Android app, and thus, the voice commands to the wheelchair 
will have to be given through the phone. The API on the app 
will first identify the speech given, before sending the classified 
data to the Arduino via Bluetooth. Similar implementations 
have also been done by both Anwer and Rakib, as they have 
utilized mobile applications for the speech recognition engine 
of their voice-controlled wheelchairs [7],[8].  

For edge devices, the Raspberry Pi may currently be the most 
suitable platform for local deep learning speech recognition due 
to its low-cost, efficiency, size, and relatively high compute 
power [19]. However, even with those benefits, applying full 
scale deep learning models such as transformers on Raspberry 
Pi is not exactly feasible due to the level of compute needed. 
Thus, light-weight and effective neural networks will have to 
be used instead. To achieve this, several papers had explored 
utilizing the long short-term memory (LSTM) Neural Network, 
as it achieved impressive results while being light-weight [22]. 
For instance, Nimisha et al. demonstrated that LSTMs were 
lightweight enough to be implemented on a Raspberry Pi 3 as 
they successfully implemented a real-time speech emotion 
recogntion system that achieved great accuracies of 86% [17]. 
In terms of LSTM utilization for voice control, Sutikno 
proposed a voice-controlled wheelchair that implemented both 
the convolutional neural network (CNN) and LSTM for the 
voice recognition engine, and the end results showed an 
extremely positive 95% accuracy when the wheelchair was 
given voice commands [9].  Additionally, Bakouri had also 
explored a similar voice controlled wheelchair idea which 
integrated an LSTM model. However, in this work, the LSTM 
model was instead implemented onto an android phone; but 
nonetheless, it was still able to achieve a 98.2% accuracy for 
the 5 commands that was used [18]. 

Other than that, the maneuverability of the wheelchair is 
another major design decision. For instance, Rakib [8] has 
included directional push buttons into his wheelchair, while 
Answer [7] has opted to include an extremely innovative and 
experimental maneuvering system which is controlled by the 
human pupil. Traditional sensors such as ultrasonic sensors also 
play a vital role for obstacle avoidance such as the work by 
Malik [6] and Umchid [4]. 

To heighten the safety of the wheelchair, the speech 
recognition system should only be activated once the assigned 
wake word has been invoked. This would avoid unintentional 
voice commands from the background or accidental 
conversation from triggering the mobility of the wheelchair.  
The wake word functions by listening to the user’s environment 
for the trigger word. This could violate the user’s privacy as 
private conversations could potentially be recorded by the 
servicing company. This argument is strengthened by a 
Microsoft report [10], which states that 41% of voice assistant 
users are worried about trust, privacy, and passive listening 
regarding these assistants. Still, the physical safety of the user 
should offset the privacy concern, as with other services. 

This research will demonstrate the implementation of a 
standalone wake word system onto the voice-controlled edge 
device (wheelchair) mini prototype. To the best of our 
knowledge, this is a first for such integration. The functionality 

of the voice control will be expanded beyond directional 
commands such as “right”, “left”, “forwards” and “backwards”, 
as to also accept locational commands that enable the 
wheelchair to move to a specific location in just one sentence, 
such as “move to the kitchen” or “move to the living room”. 
Locational commands are much more efficient and practical for 
traversing for wheelchair users.  

II. METHODOLOGY AND IMPLEMENTATION 

A. Hardware 
Fig. 1 shows all the required modules in the proposed 

system and describes how they are connected to one another. 
Raspberry Pi 4 was the platform of choice and responsible for 
the central processing of the system. The Pi 4 was powered by 
a 20,000 mAh power bank, and a Deity V4 Mini microphone 
was connected via USB to it as the audio input for voice. A 
Maker Pi HAT was also plugged onto the Pi 4 via the GPIO 
pins, which helped in simplifying the connections to the maker 
drive. The maker drive is a small circuit board which was used 
as the DC motor’s driver; thus, it was connected to both the left 
and right DC motors and was powered by 3 AA batteries. These 
batteries could also be replaced with the power bank as the 
power source. 

 
Fig. 1. Hardware block diagram. 
 

Fig. 2 and 3 show the implementation of the prototype. Due 
to the scope and limitation of the project, the mechanical 
implementation of the wheelchair was omitted and replaced 
with a mini prototype as proof of concept.   

 

 
Fig. 2. Labelled modules of the prototype. 
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Fig. 3. The prototype. 

B. Working Principle 
The UML diagram in Fig. 4 summarizes the working 

principle of the proposed voice activated wheelchair system. 
The Raspberry Pi will act as the main platform for the project, 
loaded with a wake word listener, a deep learning wake word 
model and a Speech Recognition API.  

“Hey Selltron” was assigned as the wake word as the word 
was not used anywhere else, and the “s” sound made the wake 
word more unique as compared to normal words. Due to this, 
manual recordings of the wake word had to be done and its 
variations were generated using software. 

 

 
Fig. 4. UML Diagram of the proposed system 

 
To create the wake word artificial intelligence (AI) model, 

the LSTM neural network was chosen for the project with 
further justification given in Section II-C. The wake word 
model was then built and trained in the WSL2 application on a 
Windows-based personal computer. To ease the modelling, the 

deep learning framework of PyTorch was utilized, as it had 
ready-made templates for the required neural network.  

The model was trained with both a wake word and non-wake 
word dataset with its class labels included, so that the model 
could differentiate between a wake word and non-wake word. 
Further details on the datasets used will be discussed in Section 
II-D. Additionally, it should be noted that in the training 
process, data processing and feature extraction was needed. 
This is because the model is unable to understand raw data, thus 
data processing is applied in PyTorch to help extract the 
features that the model will understand. 

After the training, the model will then be stored onto the 
Raspberry Pi 4, and it will enable it to predict the wake word 
when given audio data. For the Raspberry Pi to retrieve any 
audio data, a wake word listener system was programmed to 
carry out continuous audio recording via the microphone. In 
this listening system, data processing will also be performed, so 
that it matches with the understanding of the AI model. With 
that, the processed audio recordings will be fed to the trained 
wake word model, which will then allow the Raspberry Pi to do 
wake word detection.  

The wake word listener will run continuously until the wake 
word is detected by the prototype. Once detected, the speech 
recognition API will then be activated. At this time, voice 
commands can then be given, and the API will try to recognize 
the command based on the user’s speech. If a valid command 
like “front”, “back”, “left”, or “right” is given, the DC Motor 
Driver will then be sent signals to move the DC motors 
accordingly.  

C. Deep Learning Model 
LSTM Networks, in short, is a deep learning, sequential 

neural network that is ideal for performing sequence prediction 
tasks. It is highly effective in understanding and predicting 
patterns in sequential data such as text and speech, making it 
very useful in speech recognition applications [21].  

Structurally, LSTMs have a similar control flow when 
compared to RNNs; however, LSTMs have stark differences in 
their internal structures which allow them to retain long term 
information much better. One of these structural differences is 
the inclusion of an additional transport highway, that carries 
information throughout the entire sequence chain.  

This metaphorical transport highway is called a cell state. 
Referring to Fig. 5, the cell state is the straight line at the most 
upper part of the LSTM’s structure. In theory, this cell state will 
be the “memory” of the network as it will carry information all 
the way from earlier sequences along the process and eventually 
bringing it to later sequences; thereby reducing the effects of 
short-term memory [11].   
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Fig. 5. LSTM recurrent unit block diagram [12]. 

 
It is also seen in Fig. 5 that there are various pointwise 

operations and gates which are used. These gates are vital in the 
LTSM structure as there are different neural networks that are 
trained to decide which data in the sequence will have to be 
learnt, which data must be retained and which previous data to 
forget due to irrelevancy. They work as a unit to add, retain, or 
remove information in the cell state, and they perform it in such 
a way that only a few linear interactions are required so that the 
information in the cell state can flow without much 
manipulation. 

Since LSTMs are much better at retaining data as compared 
to RNNs, they are mostly the neural network algorithm of 
choice when it comes to cutting edge applications of speech 
recognition, machine translation, image captioning, 
handwriting generation, and question answering chatbots. 
LSTMs have also been proven to have the lowest error rates for 
wake word in clean condition [13].  Additionally, LSTM 
networks are also better than recurrent neural network (RNN) 
and Gated Recurrent Unit (GRU) as it excels in complex tasks 
and is also better at retaining long-term dependencies [20]. 
Thus, the LSTM was selected for the present work after 
considering its advantages over alternatives and its widely 
available resources. 

D. Training Dataset 
For the training, 2 classes of dataset will be needed, one being 

the non-wake word class, and one being the wake word class.  
Fig. 6 shows the non-wake word class subdivided into 3 

categories. For the category of random human voices, the open-
sourced Common Voice Corpus from Mozilla was used. A 
small portion of the corpus, consisting of about 15000 clips was 
used for the dataset. As for the silent ambient data, the dataset 
was collected by leaving the microphone to record in a quiet 
room for 30 minutes. It was then sliced into 2 second clips and 
added into the dataset. For the noisy ambient data, this was 
recorded by leaving the microphone to record for 30 minutes; 
however, this time a JBL speaker was configured to play the 
ambience of noisy parks and crowded cafes. These 3 ambient 
noise data made up 1 hour of recording and was subsequently 
sliced and duplicated into 15000 data clips. In total, 30000 clips 

were used for the non-Wake Word dataset.  

 
Fig. 6. Non-wake word class dataset breakdown. 
 

As before, the wake word class was also subdivided into 3 
categories as in Fig. 7. For the self-recording category, the data 
was collected by taking 500 voice samples of self-recordings 
with varying pronunciations and pitches. This was done directly 
using the Raspberry Pi’s microphone and without the use of 
speaker playback.  

For the Text-to-Speech (TTS) recordings category, several 
TTS websites were visited to collect the wake word recordings. 
Some TTS websites were able to provide different accents and 
different intonations, which was collected to offer more variety 
in the dataset. The real-life recording samples category 
represents recordings of various people outside of the research 
group which also offer varying intonations and pitches for the 
dataset.  

 
Fig. 7. Wake word class dataset breakdown. 

E. Training Process 
The flowchart in Fig. 8 shows the full training process, with 

the orange flowchart representing the initialization phase and 
the blue flowchart representing the training and evaluation 
phase. During initialization, the program will first read through 
the .json files to understand the labels and locations of the 
dataset samples. Once this is done, each sample will then be 
converted into mel-frequency cepstral coefficients (MFCC), 
which is the picture representation of sound.  

These MFCC samples then undergo a procedure called 
spectrogram augmentation. This procedure will modify each 
MFCC sample by warping it in the time domain, masking 
blocks of consecutive frequency channels, and masking blocks 
of utterance in time. Doing this will cause random losses of 
information to each dataset sample; however, this is done 
purposely so that the model will be forced to learn harder, which 
will allow it to become more robust against sample 
deformations after training.  
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Next, the augmented dataset is converted into a dataset object 
in Pytorch, where it is then inserted into a data loader. The 
Model’s parameters will then be defined based on the 
arguments that had been inputted into the code. At this point, 
the LSTM class is then created by using the template from the 
torch.nn module and the specifications from the defined 
parameters. The loss function will also be defined by using the 
“BCEWithLogitsLoss” function from the torch.nn module to 
complete the initialization. 

After initialization, the training process then begins with a 
user-defined learning rate and epoch. The training accuracy, 
loss, precision, and F1-score of the training is then calculated 
per batch and printed out onto the terminal. After training, the 
model is then validated using a separate validation dataset; and 
similarly, the model’s accuracy, loss, precision, and F1-score is 
also calculated and printed out.  

To prevent saving an unnecessary amount of models, the 
code was written so that it compared its most recent validation 
scores to its previous scores, and it only saved the model’s 
weights to a checkpoint if there had been an improvement to the 
scores. This process was placed in a loop which ran 
continuously according to the given epoch. For the training, we 
implemented an early stopping approach, and halted the 
training once the model obtains an F1-score of 0.99 for more 
than 5 continous epochs. However, if the scores remained 
below 0.99 throughout the epochs, early stopping would not be 
implemented. Early stopping was implemented as a precaution 
to prevent the model from overfitting. 

  

 
Fig. 8. Training process flowchart. 

F. Voice Command 
The integration of Googles speech API into our system is 

shown in Fig. 9. Firstly, a user will need to provide voice inputs 
so that the API can use its speech-to-text functionality to 
convert recognized words into strings. The strings of the 
recognized words are then stored into a variable which 

undergoes a logical comparison to see if it matches specific 
command strings that had been predefined. This whole process 
is a continuous loop which exits once a correct match is 
obtained. When a match is found, the action which corresponds 
to the matched command will be executed. For example, the 
wheelchair’s motors will be programmed to move forward if 
the command string of “move forward” is matched. 

 
Fig. 9. Voice command system flowchart. 
 
A total of 11 commands were prepared. These commands can 
be found from the following list:  

1. Turn Right 
2. Turn Left 
3. Go Forwards 
4. Go Backwards 
5. From Bedroom to Kitchen 
6. From Kitchen to Living Room 
7. From Bedroom to Living Room 
8. From Living Room to Kitchen 
9. From Kitchen to Bedroom 
10. From Living Room to Bedroom 
11. Exit 

Each command is self-explanatory, with the motor’s 
movements prewritten and mapped to the command. It should 
be noted that commands 5 to 10 will represent the locational 
commands, which will be used to demonstrate the prototype’s 
ability to move to specific positions without further guidance.  

G. Overall System 
The flow chart in Fig. 10 describes the prototype’s working 

principle in full, as it combines the wake word model, the voice 
command system, and the motorized hardware. The system will 
first start off by initializing the microphone. A 2-second 
continuous recording stream will then be started, and each 
sample will be stored into a recording queue. At this point, the 
samples will then be converted into their MFCC form, before 
being fed into the trained wake word model for prediction.  

If the model does not predict the wake word, the system will 
return to its listening stage; however, if the model predicts that 
the MFCC sample is a wake word, the software will then move 
to the voice command stage. This is when the Google Speech 
API will be initialized and will wait for the user’s input. If the 
user does indeed utter a valid command, then the software will 
perform the action; however, if not, the software will simply 
exit the voice command system and go back to wake word 
listening.  
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Fig. 10. Overall System Flowchart. 

H. Evaluation Methods 
To evaluate the Wake Word Model and Voice Command 

system, tests in different scenarios and environments were 
conducted. In each test, the system was evaluated multiple 
times so that an accuracy value could be obtained. This value 
was calculated with the formula refer to (1) and was 
implemented in all tests that involved accuracy evaluations. 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆𝑜𝑜𝑁𝑁𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴𝑆𝑆

𝑇𝑇𝑜𝑜𝐴𝐴𝑇𝑇𝑆𝑆 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝐴𝐴𝑆𝑆
 × 100%             (1)  

 
1. Detection Range 

In this test, the Wake Word model and Voice Command 
System’s accuracy will be tested at different distances of input. 
Details of the tests can be found in Table I. 

TABLE I . DETAILS FOR DETECTION RANGE TEST  

Location Quiet Controlled Room 

Distances 
Tested 

10 cm, 20 cm, 50 cm, 100 cm, 150 cm, 
200 cm, 300 cm 

 
For the test, each distance will be tested in separate sets of 5. 

Each set will consist of 20 prompting attempts, which adds up 
to 100 total attempts at each distance. After performing the 100 
attempts, the accuracy will then be calculated using formula 
mentioned in section H. 
 
2. Accuracy in Simulated Environments 

For this test, the Wake Word model and Voice Command 
System’s accuracy will be tested at different levels (decibels) 
and types of noise. Details of the tests can be found in Table II. 

TABLE I . DETAILS FOR NOISY ENVIRONMENT TEST  

Location Simulated Noisy Park Environment, 
Simulated Noisy Cafe Environment 

Distance Fixed 50 cm 

Decibel Tested 40 dB – 75dB  

To simulate noisy Park and Café environments, a high-
quality surround sound JBL speaker will be utilized to play 
royalty free ambience samples of these environments.  

The system will then evaluated in these simulated 
environments but at 3 different noise levels; with the noise 
levels being controlled using the volume toggle of the speaker. 
Additionally, Google Assitance’s Wake Word system on an 
android phone will also tested similarly so that its performance 
can be used as a benchmark. 
 
3. Accuracy for Different Individuals 

In this test, the Wake Word Model’s universal recognition 
property will be evaluated. Details of the tests can be found in 
Table III. 

TABLE III. DETAILS FOR DIFFERENT INDIVIDUAL TEST  

Location Quiet Controlled 
Environment 

Distance Fixed 50 cm 

Number of People Tested 10   

 
A total of 10 (50% Male, 50% Female) candidates will be 

selected to take part in the test. Each candidate will be instructed 
to say the Wake Word, and the model’s subsequent response 
will be recorded down. Each candidate will also be asked to test 
the model 3 times, to make sure that results are consistent. 
Accuracy will also be calculated using the formula in section H. 
 
4. Voice Command Accuracy and Compliances.  

This test will evaluate the accuracy of every implemented 
voice command in the system and will also test its compliance. 
Details of the tests can be found in Table IV. 

TABLE IV. DETAILS FOR VOICE COMMAND ACCURACY AND COMPLIANCE 
TEST  

Location Quiet Controlled Room 

Distance Fixed 50 cm 

 
For this test, the system’s command recognition accuracy 

will first be tested. Each command will be tested in 5 sets of 20 
attempts, totalling up to 100 prompting attempts.  

Next, compliance testing will also be performed in a similar 
5 sets of 20 manner. However, the compliance test is meant to 
evaluate the system’s compliance towards a given voice 
command. For example, if given command “Turn Right” the 
system is marked as successful if it performs a right turn, but 
mark as unsuccessful if it performs an incorrect movement. 
 
5. Latency 

In this test, the latency of the Wake Word Model and each 
command will be evaluated. Details of the tests can be found in 
Table V. 

TABLE V. DETAILS FOR LATENCY TEST  

Location Quiet Controlled Room 

Distance Fixed 50 cm 
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In this latency evaluation, a timer will be used to time the 
response time for the system. Each test will be repeated 10 
times, and the average will be recorded as the latency result. 

III. RESULTS AND DISCUSSIONS 

A. Detection Range (Controlled) 
The results of the detection accuracy versus distance are 

shown in Fig. 11. The wake word model was able to achieve 
around 90% accuracy when it was tested between the distances 
of 10 cm to 200 cm (user to microphone) in a controlled lab 
environment. For the voice command recognition, the accuracy 
is above 80% with the same test setup. The loudness of the input 
voice is as if greetings or commands are naturally given to 
another person. 

B. Accuracy in Simulated Environment 
For validation, the detection of the proposed wake word 

model is compared to Google Assistant. Different noise levels 
were generated by a speaker. From the results in Fig. 12, it is 
shown that the proposed model was able to perform relatively 
well (above 80% accuracy) under 55 dB of simulated park 
noise. It started to struggle once the noise amplitude level 
increased. It is noted that the wake word model performed 
better than Google as the model has been trained to specifically 
trigger on the “Hey SellTron” keyword.  

Another test was conducted in a café environment and the 
result is shown in Fig. 13. Here, the wake word model could 
only detect the keyword with around 80% accuracy when the 
background noise is less than 50 dB. This showed that the 
model is more sensitive towards conversational noise. Google 
also showed its strength in voice detection in human 
background noise.  

 
(a) 

 
(b) 

Fig. 11. Accuracy against distance for (a) the wake word and 
(b) the voice command. 

 

 
Fig. 12. Accuracy of wake word model vs google assistant in 

park environment. 
 

 
Fig. 13. Wake word model versus google assistant against cafe 
environment. 
 
 Moving on to speech recognition, the results of voice 
detection in noisy environments are shown in Fig. 14. The 
system performed well with above 80% accuracy when the 
background noise is below 65 dB. The speech recognition 
performed better than the wake word due to Google’s 
extensively trained model. 

 
Fig. 14. Speech recognition accuracy in park and café 
environments. 

C. Accuracy for Different Individuals 
From the results in Table VI, it was found that the accuracy 

was not entirely consistent, as there were huge variations in 
accuracy between each individual. This is most probably 
because everyone had different voices, and there were various 
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distinctions in terms of tone, pitch, and loudness for each 
person. Since the model was trained on only a small sample size 
of voices (highly personalized), it meant that not all variety of 
voices were accounted for. Hence, to improve the wake word 
model further, the voice dataset will have to be significantly 
expanded; and a balance between male and female datasets will 
also have to be kept. 

TABLE VI. WAKE WORD MODEL ACCURACY FOR DIFFERENT INDIVIDUALS 
FOR 5 ATTEMPTS 

Person # Gender Accuracy (%) 

1 Male 20 

2 Male 60 

3 Male 100 

4 Male 60 

5 Male 80 

6 Female 100 

7 Female 60 

8 Female 20 

9 Female 40 

10 Female 60 

 
D. Accuracy for Voice Commands and Compliances  

The accuracy of the voice commands is above 90%, with the 
only exception being the “turn left” command which was 
slightly lower at 89%, as shown in Fig. 15. The reason for its 
lower accuracy is because the system would misrecognize the 
word “turn left” as “turn light” during the inaccurate tries, 
which may be influenced by home automation modules for 
“turning on the lights”. Once the commands were identified, the 
prototype would perform the task correctly without fail for any 
of the valid commands given. 

 
Fig. 15. Accuracy of different voice commands. 
 
E. Latency 

The wake word activation takes an average of 0.73 s whereby 
the voice commands averaged around 1.5 s as shown in Table 
VII and Fig. 16, respectively. These are acceptable response 
time for wheelchair application. 

 

 

 

TABLE VII. WAKE WORLD LATENCY 

Office Average (s) Min (s) Max (s) 

Response time 0.73 0.33 1.10 

    

 
Fig. 16. Voice Command Latency 

IV. FUTURE RECOMMENDATIONS 
The voice controlled wheelchair is still a very untapped field; 

thus, this project and report will indubitably add to it. However, 
other than the implementations that had been demonstrated in 
this report, it is noted that there are several recommendations 
that will allow the project to be further elevated. 

The first recommendation is to add sensors to the current 
Wheelchair project. The main sensors that are recommended 
will be the ultrasonic sensor and LiDAR sensor. This is because 
these sensors will allow for the implementation of obstacle 
avoidance features [14]. This is an important feature which was 
excluded from the present project due to time constraint, but it 
is a necessity for the Wheelchair if it were to be used 
commercially. Adding these features will drastically improve 
the safety of the wheelchair, and it will prevent countless 
collisions into objects or to walls. Additionally, LiDAR also 
offers the functionality of mapping out indoor rooms or home 
interiors [15]. The is one of the most important features that has 
to be added if the locational voice command concept were to be 
implemented. This is because this function would allow the 
Wheelchair to understand where exactly each room or area 
would be located at; thus, minimizing possible the automation 
errors that may occur. 

Aside from that, it is also recommended that the motor be 
changed for future implementations, as the one used in this 
project was only for proof of concept. In a commercial situation, 
the wheelchair would need to have utmost precision so that 
accidents do not occur, and the motors will also need to be able 
to handle the human weight. Other than that, it is also 
recommended the Wake Word Model be further trained with 
larger datasets, so that  it will be able to understand the Wake 
Word even when it is said with an entirely different accent. 
Many large corporations have proven that an accurate Wake 
Word model is possible as long as enough dataset and 
computational power is prepared. Presently, a possible 
candidate model to consider for the future would be OpenAI’s 
whisper speech recognition model, as it was successfully 
implemented on a Raspberry Pi Model B by Wechsler and was 
able to perform real-time speech recognition and transcription 
[16]. 
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V. CONCLUSION 
The overall performance showed the feasibility of 

implementing both the wake word and speech recognition 
features on an edge device. For the wake word model, tests 
showed that it has a detection accuracy of slightly above 80% 
when the background noise is less than 50 dB. For the speech 
recognition, the system has above 80% accuracy when the 
background noise is below 65 dB. Once the command has been 
identified, the system registers a 100% accuracy for command 
compliance. This case study would also apply to the literature 
of the design and development of voice-controlled wheelchairs 
or similar applications. 
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