
JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH https://doi.org/10.24191/jeesr.v24i1.013

80

Abstract—Edge devices play an ever-increasing role as to reduce
latency, improve efficiency and adapt simplicity. However, their
lower processing capabilities compared to traditional setup means
that their usage are also limited. This research explores the
possibility of implementing both wake word and speech
recognition on an edge device. The proposed wake word system,
which is for voice activation, is developed based on the LSTM
Neural Network model. The model is trained, modelled, and
evaluated to respond to the wake word of “Hey SellTron”. As for
the speech recognition (voice command) system, Google Speech
API was selected to recognize standard directional commands
(left, right, forwards, backwards), as well as the new conceptual
locational commands (“go to kitchen”, “go to bedroom”, etc.). To
prove the feasibility of the developed system, these two features
were integrated into an edge device on a mobile platform;
representing a conceptual mini wheelchair ‘prototype’ due to
project constraints. Evaluations showed that the prototype was
able to activate and respond to voice commands correctly with
over 80% accuracy in low ambient noise (<50dB).

Index Terms—Voice activated wheelchair, wake word, speech
recognition, LSTM, Google Speech API

I. THE WHEELCHAIR AS AN EDGE DEVICE
Current commercial wheelchairs come in two modes: manual

or electric. The manual wheelchairs operated by the hands and
upper body can cause shoulder and palm injuries due to the

repetitive pushing motions needed to propel it. According to
[1], research estimate that upwards of 70 – 100% of wheelchair
users will experience injuries and varying degrees of pain in
their upper body region after usage; with the three primary
regions being the wrist with 40 – 66% likelihood, the elbow
with 5 – 16%, and the shoulder with 30 – 60%. In addition,
injuries due to blisters, abrasions, and lacerations occurred 18%
of the time, as well as carpal tunnel syndrome which has a 27 –
90% chance of occurrence [2].

The obvious solution to manual is the electrically powered
wheelchair, which is normally operated using joysticks or
buttons by hand. However, the drawbacks are mechanical in
nature due to the factor of wear and tear of moving mechanical
parts especially at the controller. Besides, maneuvering also
requires a reasonable amount of awareness and motor skills. A
hand’s free solution could potentially address some of the issues
by leveraging on the edge device capabilities.

Voice-controlled handsfree wheelchair is slowly but looks
surely becoming a real possibility as speech recognition and
detection technology have made major progress leaps in the
past decade, even more so with the public release of ChatGPT
and similar large language models (LLM). Looking slightly
back, sparks of interest in wheelchair with voice recognition
feature are already evident.

An instance of this can be seen in the implementation done
by Vijay, which was achieved by pairing the Arduino platform
with the HM2007 voice recognition module [3]. In a similar
manner, Uchid also implemented a similar concept for the
system by pairing an Arduino Uno R3 with a Greetech Voice
Recognition Module V.3 [4]. Tan also went with the same
route, by pairing a voice recognition module to the Atmega
328P Arduino microcontroller [5]. However, Tan’s approach
differs slightly, as the voice recognition module’s connection to
the Arduino microcontroller was done via Bluetooth, using the
HC-05 Bluetooth Module. Hence, this evidently shows the
usage possibility of pairing low-powered edge devices such as
the Arduino with voice recognition modules for the voice-
controlled wheelchair.

Further improvement can be seen from the introduction of
the Internet of Things (IoT) to the wheelchairs. For example,
Malik utilized the Google Web Service Application
Programming Interface (API) for his Arduino Uno based voice-
controlled wheelchair [6]. This API was integrated onto an

Wake Word and Speech Recognition
Application on Edge Device: A Case of

Improving the Electric Wheelchair

Low Jian He, Solahuddin Yusuf Fadhlullah*, Khadijah Kamarulazizi, Samihah Abdullah, and Shabinar
Abdul Hamid

This manuscript is submitted on 10 January 2024, revised on 21 February
2024, accepted on 26 March 2024 and published on 30 April 2024. Low Jian
He was with the School of Engineering, INTI International College Penang,
11900 Penang, Malaysia. He is now with the School of Computer Science and
Electronic Engineering, University of Surrey, Guildford, UK (e-mail:
jl02958@surrey.ac.uk).

Solahuddin Yusuf Fadhlullah and Khadijah Kamarulazizi are with the
School of Engineering, INTI International College Penang, 11900 Penang,
Malaysia. (e-mail: solah.fadhlullah@newinti.edu.my and khadijah.azizi@
newinti.edu.my).

Samihah Abdullah and Shabinar Abdul Hamid are with the School of
Electrical Engineering, College of Engineering, Universiti Teknologi MARA,
Cawangan Pulau Pinang, 13500, Malaysia. (e-mail:
samihah.abdullah@uitm.edu.my and shabinar@uitm.edu.my).

*Corresponding author
Email address: solah.fadhlullah@newinti.edu.my

1985-5389/© 2023 The Authors. Published by UiTM Press. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.24 APR 2024

81

Android app, and thus, the voice commands to the wheelchair
will have to be given through the phone. The API on the app
will first identify the speech given, before sending the classified
data to the Arduino via Bluetooth. Similar implementations
have also been done by both Anwer and Rakib, as they have
utilized mobile applications for the speech recognition engine
of their voice-controlled wheelchairs [7],[8].

For edge devices, the Raspberry Pi may currently be the most
suitable platform for local deep learning speech recognition due
to its low-cost, efficiency, size, and relatively high compute
power [19]. However, even with those benefits, applying full
scale deep learning models such as transformers on Raspberry
Pi is not exactly feasible due to the level of compute needed.
Thus, light-weight and effective neural networks will have to
be used instead. To achieve this, several papers had explored
utilizing the long short-term memory (LSTM) Neural Network,
as it achieved impressive results while being light-weight [22].
For instance, Nimisha et al. demonstrated that LSTMs were
lightweight enough to be implemented on a Raspberry Pi 3 as
they successfully implemented a real-time speech emotion
recogntion system that achieved great accuracies of 86% [17].
In terms of LSTM utilization for voice control, Sutikno
proposed a voice-controlled wheelchair that implemented both
the convolutional neural network (CNN) and LSTM for the
voice recognition engine, and the end results showed an
extremely positive 95% accuracy when the wheelchair was
given voice commands [9]. Additionally, Bakouri had also
explored a similar voice controlled wheelchair idea which
integrated an LSTM model. However, in this work, the LSTM
model was instead implemented onto an android phone; but
nonetheless, it was still able to achieve a 98.2% accuracy for
the 5 commands that was used [18].

Other than that, the maneuverability of the wheelchair is
another major design decision. For instance, Rakib [8] has
included directional push buttons into his wheelchair, while
Answer [7] has opted to include an extremely innovative and
experimental maneuvering system which is controlled by the
human pupil. Traditional sensors such as ultrasonic sensors also
play a vital role for obstacle avoidance such as the work by
Malik [6] and Umchid [4].

To heighten the safety of the wheelchair, the speech
recognition system should only be activated once the assigned
wake word has been invoked. This would avoid unintentional
voice commands from the background or accidental
conversation from triggering the mobility of the wheelchair.
The wake word functions by listening to the user’s environment
for the trigger word. This could violate the user’s privacy as
private conversations could potentially be recorded by the
servicing company. This argument is strengthened by a
Microsoft report [10], which states that 41% of voice assistant
users are worried about trust, privacy, and passive listening
regarding these assistants. Still, the physical safety of the user
should offset the privacy concern, as with other services.

This research will demonstrate the implementation of a
standalone wake word system onto the voice-controlled edge
device (wheelchair) mini prototype. To the best of our
knowledge, this is a first for such integration. The functionality

of the voice control will be expanded beyond directional
commands such as “right”, “left”, “forwards” and “backwards”,
as to also accept locational commands that enable the
wheelchair to move to a specific location in just one sentence,
such as “move to the kitchen” or “move to the living room”.
Locational commands are much more efficient and practical for
traversing for wheelchair users.

II. METHODOLOGY AND IMPLEMENTATION

A. Hardware
Fig. 1 shows all the required modules in the proposed

system and describes how they are connected to one another.
Raspberry Pi 4 was the platform of choice and responsible for
the central processing of the system. The Pi 4 was powered by
a 20,000 mAh power bank, and a Deity V4 Mini microphone
was connected via USB to it as the audio input for voice. A
Maker Pi HAT was also plugged onto the Pi 4 via the GPIO
pins, which helped in simplifying the connections to the maker
drive. The maker drive is a small circuit board which was used
as the DC motor’s driver; thus, it was connected to both the left
and right DC motors and was powered by 3 AA batteries. These
batteries could also be replaced with the power bank as the
power source.

Fig. 1. Hardware block diagram.

Fig. 2 and 3 show the implementation of the prototype. Due
to the scope and limitation of the project, the mechanical
implementation of the wheelchair was omitted and replaced
with a mini prototype as proof of concept.

Fig. 2. Labelled modules of the prototype.

He et.al.: Wake Word and Speech Recognition Application on Edge Device: A Case of Improving the Electric Wheelchair

82

Fig. 3. The prototype.

B. Working Principle
The UML diagram in Fig. 4 summarizes the working

principle of the proposed voice activated wheelchair system.
The Raspberry Pi will act as the main platform for the project,
loaded with a wake word listener, a deep learning wake word
model and a Speech Recognition API.

“Hey Selltron” was assigned as the wake word as the word
was not used anywhere else, and the “s” sound made the wake
word more unique as compared to normal words. Due to this,
manual recordings of the wake word had to be done and its
variations were generated using software.

Fig. 4. UML Diagram of the proposed system

To create the wake word artificial intelligence (AI) model,

the LSTM neural network was chosen for the project with
further justification given in Section II-C. The wake word
model was then built and trained in the WSL2 application on a
Windows-based personal computer. To ease the modelling, the

deep learning framework of PyTorch was utilized, as it had
ready-made templates for the required neural network.

The model was trained with both a wake word and non-wake
word dataset with its class labels included, so that the model
could differentiate between a wake word and non-wake word.
Further details on the datasets used will be discussed in Section
II-D. Additionally, it should be noted that in the training
process, data processing and feature extraction was needed.
This is because the model is unable to understand raw data, thus
data processing is applied in PyTorch to help extract the
features that the model will understand.

After the training, the model will then be stored onto the
Raspberry Pi 4, and it will enable it to predict the wake word
when given audio data. For the Raspberry Pi to retrieve any
audio data, a wake word listener system was programmed to
carry out continuous audio recording via the microphone. In
this listening system, data processing will also be performed, so
that it matches with the understanding of the AI model. With
that, the processed audio recordings will be fed to the trained
wake word model, which will then allow the Raspberry Pi to do
wake word detection.

The wake word listener will run continuously until the wake
word is detected by the prototype. Once detected, the speech
recognition API will then be activated. At this time, voice
commands can then be given, and the API will try to recognize
the command based on the user’s speech. If a valid command
like “front”, “back”, “left”, or “right” is given, the DC Motor
Driver will then be sent signals to move the DC motors
accordingly.

C. Deep Learning Model
LSTM Networks, in short, is a deep learning, sequential

neural network that is ideal for performing sequence prediction
tasks. It is highly effective in understanding and predicting
patterns in sequential data such as text and speech, making it
very useful in speech recognition applications [21].

Structurally, LSTMs have a similar control flow when
compared to RNNs; however, LSTMs have stark differences in
their internal structures which allow them to retain long term
information much better. One of these structural differences is
the inclusion of an additional transport highway, that carries
information throughout the entire sequence chain.

This metaphorical transport highway is called a cell state.
Referring to Fig. 5, the cell state is the straight line at the most
upper part of the LSTM’s structure. In theory, this cell state will
be the “memory” of the network as it will carry information all
the way from earlier sequences along the process and eventually
bringing it to later sequences; thereby reducing the effects of
short-term memory [11].

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.24 APR 2024

83

Fig. 5. LSTM recurrent unit block diagram [12].

It is also seen in Fig. 5 that there are various pointwise

operations and gates which are used. These gates are vital in the
LTSM structure as there are different neural networks that are
trained to decide which data in the sequence will have to be
learnt, which data must be retained and which previous data to
forget due to irrelevancy. They work as a unit to add, retain, or
remove information in the cell state, and they perform it in such
a way that only a few linear interactions are required so that the
information in the cell state can flow without much
manipulation.

Since LSTMs are much better at retaining data as compared
to RNNs, they are mostly the neural network algorithm of
choice when it comes to cutting edge applications of speech
recognition, machine translation, image captioning,
handwriting generation, and question answering chatbots.
LSTMs have also been proven to have the lowest error rates for
wake word in clean condition [13]. Additionally, LSTM
networks are also better than recurrent neural network (RNN)
and Gated Recurrent Unit (GRU) as it excels in complex tasks
and is also better at retaining long-term dependencies [20].
Thus, the LSTM was selected for the present work after
considering its advantages over alternatives and its widely
available resources.

D. Training Dataset
For the training, 2 classes of dataset will be needed, one being

the non-wake word class, and one being the wake word class.
Fig. 6 shows the non-wake word class subdivided into 3

categories. For the category of random human voices, the open-
sourced Common Voice Corpus from Mozilla was used. A
small portion of the corpus, consisting of about 15000 clips was
used for the dataset. As for the silent ambient data, the dataset
was collected by leaving the microphone to record in a quiet
room for 30 minutes. It was then sliced into 2 second clips and
added into the dataset. For the noisy ambient data, this was
recorded by leaving the microphone to record for 30 minutes;
however, this time a JBL speaker was configured to play the
ambience of noisy parks and crowded cafes. These 3 ambient
noise data made up 1 hour of recording and was subsequently
sliced and duplicated into 15000 data clips. In total, 30000 clips

were used for the non-Wake Word dataset.

Fig. 6. Non-wake word class dataset breakdown.

As before, the wake word class was also subdivided into 3
categories as in Fig. 7. For the self-recording category, the data
was collected by taking 500 voice samples of self-recordings
with varying pronunciations and pitches. This was done directly
using the Raspberry Pi’s microphone and without the use of
speaker playback.

For the Text-to-Speech (TTS) recordings category, several
TTS websites were visited to collect the wake word recordings.
Some TTS websites were able to provide different accents and
different intonations, which was collected to offer more variety
in the dataset. The real-life recording samples category
represents recordings of various people outside of the research
group which also offer varying intonations and pitches for the
dataset.

Fig. 7. Wake word class dataset breakdown.

E. Training Process
The flowchart in Fig. 8 shows the full training process, with

the orange flowchart representing the initialization phase and
the blue flowchart representing the training and evaluation
phase. During initialization, the program will first read through
the .json files to understand the labels and locations of the
dataset samples. Once this is done, each sample will then be
converted into mel-frequency cepstral coefficients (MFCC),
which is the picture representation of sound.

These MFCC samples then undergo a procedure called
spectrogram augmentation. This procedure will modify each
MFCC sample by warping it in the time domain, masking
blocks of consecutive frequency channels, and masking blocks
of utterance in time. Doing this will cause random losses of
information to each dataset sample; however, this is done
purposely so that the model will be forced to learn harder, which
will allow it to become more robust against sample
deformations after training.

He et.al.: Wake Word and Speech Recognition Application on Edge Device: A Case of Improving the Electric Wheelchair

84

Next, the augmented dataset is converted into a dataset object
in Pytorch, where it is then inserted into a data loader. The
Model’s parameters will then be defined based on the
arguments that had been inputted into the code. At this point,
the LSTM class is then created by using the template from the
torch.nn module and the specifications from the defined
parameters. The loss function will also be defined by using the
“BCEWithLogitsLoss” function from the torch.nn module to
complete the initialization.

After initialization, the training process then begins with a
user-defined learning rate and epoch. The training accuracy,
loss, precision, and F1-score of the training is then calculated
per batch and printed out onto the terminal. After training, the
model is then validated using a separate validation dataset; and
similarly, the model’s accuracy, loss, precision, and F1-score is
also calculated and printed out.

To prevent saving an unnecessary amount of models, the
code was written so that it compared its most recent validation
scores to its previous scores, and it only saved the model’s
weights to a checkpoint if there had been an improvement to the
scores. This process was placed in a loop which ran
continuously according to the given epoch. For the training, we
implemented an early stopping approach, and halted the
training once the model obtains an F1-score of 0.99 for more
than 5 continous epochs. However, if the scores remained
below 0.99 throughout the epochs, early stopping would not be
implemented. Early stopping was implemented as a precaution
to prevent the model from overfitting.

Fig. 8. Training process flowchart.

F. Voice Command
The integration of Googles speech API into our system is

shown in Fig. 9. Firstly, a user will need to provide voice inputs
so that the API can use its speech-to-text functionality to
convert recognized words into strings. The strings of the
recognized words are then stored into a variable which

undergoes a logical comparison to see if it matches specific
command strings that had been predefined. This whole process
is a continuous loop which exits once a correct match is
obtained. When a match is found, the action which corresponds
to the matched command will be executed. For example, the
wheelchair’s motors will be programmed to move forward if
the command string of “move forward” is matched.

Fig. 9. Voice command system flowchart.

A total of 11 commands were prepared. These commands can
be found from the following list:

1. Turn Right
2. Turn Left
3. Go Forwards
4. Go Backwards
5. From Bedroom to Kitchen
6. From Kitchen to Living Room
7. From Bedroom to Living Room
8. From Living Room to Kitchen
9. From Kitchen to Bedroom
10. From Living Room to Bedroom
11. Exit

Each command is self-explanatory, with the motor’s
movements prewritten and mapped to the command. It should
be noted that commands 5 to 10 will represent the locational
commands, which will be used to demonstrate the prototype’s
ability to move to specific positions without further guidance.

G. Overall System
The flow chart in Fig. 10 describes the prototype’s working

principle in full, as it combines the wake word model, the voice
command system, and the motorized hardware. The system will
first start off by initializing the microphone. A 2-second
continuous recording stream will then be started, and each
sample will be stored into a recording queue. At this point, the
samples will then be converted into their MFCC form, before
being fed into the trained wake word model for prediction.

If the model does not predict the wake word, the system will
return to its listening stage; however, if the model predicts that
the MFCC sample is a wake word, the software will then move
to the voice command stage. This is when the Google Speech
API will be initialized and will wait for the user’s input. If the
user does indeed utter a valid command, then the software will
perform the action; however, if not, the software will simply
exit the voice command system and go back to wake word
listening.

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.24 APR 2024

85

Fig. 10. Overall System Flowchart.

H. Evaluation Methods
To evaluate the Wake Word Model and Voice Command

system, tests in different scenarios and environments were
conducted. In each test, the system was evaluated multiple
times so that an accuracy value could be obtained. This value
was calculated with the formula refer to (1) and was
implemented in all tests that involved accuracy evaluations.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆𝑜𝑜𝑁𝑁𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴𝑆𝑆

𝑇𝑇𝑜𝑜𝐴𝐴𝑇𝑇𝑆𝑆 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝐴𝐴𝑆𝑆
 × 100% (1)

1. Detection Range

In this test, the Wake Word model and Voice Command
System’s accuracy will be tested at different distances of input.
Details of the tests can be found in Table I.

TABLE I . DETAILS FOR DETECTION RANGE TEST

Location Quiet Controlled Room

Distances
Tested

10 cm, 20 cm, 50 cm, 100 cm, 150 cm,
200 cm, 300 cm

For the test, each distance will be tested in separate sets of 5.

Each set will consist of 20 prompting attempts, which adds up
to 100 total attempts at each distance. After performing the 100
attempts, the accuracy will then be calculated using formula
mentioned in section H.

2. Accuracy in Simulated Environments

For this test, the Wake Word model and Voice Command
System’s accuracy will be tested at different levels (decibels)
and types of noise. Details of the tests can be found in Table II.

TABLE I . DETAILS FOR NOISY ENVIRONMENT TEST

Location Simulated Noisy Park Environment,
Simulated Noisy Cafe Environment

Distance Fixed 50 cm

Decibel Tested 40 dB – 75dB

To simulate noisy Park and Café environments, a high-
quality surround sound JBL speaker will be utilized to play
royalty free ambience samples of these environments.

The system will then evaluated in these simulated
environments but at 3 different noise levels; with the noise
levels being controlled using the volume toggle of the speaker.
Additionally, Google Assitance’s Wake Word system on an
android phone will also tested similarly so that its performance
can be used as a benchmark.

3. Accuracy for Different Individuals

In this test, the Wake Word Model’s universal recognition
property will be evaluated. Details of the tests can be found in
Table III.

TABLE III. DETAILS FOR DIFFERENT INDIVIDUAL TEST

Location Quiet Controlled
Environment

Distance Fixed 50 cm

Number of People Tested 10

A total of 10 (50% Male, 50% Female) candidates will be

selected to take part in the test. Each candidate will be instructed
to say the Wake Word, and the model’s subsequent response
will be recorded down. Each candidate will also be asked to test
the model 3 times, to make sure that results are consistent.
Accuracy will also be calculated using the formula in section H.

4. Voice Command Accuracy and Compliances.

This test will evaluate the accuracy of every implemented
voice command in the system and will also test its compliance.
Details of the tests can be found in Table IV.

TABLE IV. DETAILS FOR VOICE COMMAND ACCURACY AND COMPLIANCE
TEST

Location Quiet Controlled Room

Distance Fixed 50 cm

For this test, the system’s command recognition accuracy

will first be tested. Each command will be tested in 5 sets of 20
attempts, totalling up to 100 prompting attempts.

Next, compliance testing will also be performed in a similar
5 sets of 20 manner. However, the compliance test is meant to
evaluate the system’s compliance towards a given voice
command. For example, if given command “Turn Right” the
system is marked as successful if it performs a right turn, but
mark as unsuccessful if it performs an incorrect movement.

5. Latency

In this test, the latency of the Wake Word Model and each
command will be evaluated. Details of the tests can be found in
Table V.

TABLE V. DETAILS FOR LATENCY TEST

Location Quiet Controlled Room

Distance Fixed 50 cm

He et.al.: Wake Word and Speech Recognition Application on Edge Device: A Case of Improving the Electric Wheelchair

86

In this latency evaluation, a timer will be used to time the
response time for the system. Each test will be repeated 10
times, and the average will be recorded as the latency result.

III. RESULTS AND DISCUSSIONS

A. Detection Range (Controlled)
The results of the detection accuracy versus distance are

shown in Fig. 11. The wake word model was able to achieve
around 90% accuracy when it was tested between the distances
of 10 cm to 200 cm (user to microphone) in a controlled lab
environment. For the voice command recognition, the accuracy
is above 80% with the same test setup. The loudness of the input
voice is as if greetings or commands are naturally given to
another person.

B. Accuracy in Simulated Environment
For validation, the detection of the proposed wake word

model is compared to Google Assistant. Different noise levels
were generated by a speaker. From the results in Fig. 12, it is
shown that the proposed model was able to perform relatively
well (above 80% accuracy) under 55 dB of simulated park
noise. It started to struggle once the noise amplitude level
increased. It is noted that the wake word model performed
better than Google as the model has been trained to specifically
trigger on the “Hey SellTron” keyword.

Another test was conducted in a café environment and the
result is shown in Fig. 13. Here, the wake word model could
only detect the keyword with around 80% accuracy when the
background noise is less than 50 dB. This showed that the
model is more sensitive towards conversational noise. Google
also showed its strength in voice detection in human
background noise.

(a)

(b)

Fig. 11. Accuracy against distance for (a) the wake word and
(b) the voice command.

Fig. 12. Accuracy of wake word model vs google assistant in

park environment.

Fig. 13. Wake word model versus google assistant against cafe
environment.

 Moving on to speech recognition, the results of voice
detection in noisy environments are shown in Fig. 14. The
system performed well with above 80% accuracy when the
background noise is below 65 dB. The speech recognition
performed better than the wake word due to Google’s
extensively trained model.

Fig. 14. Speech recognition accuracy in park and café
environments.

C. Accuracy for Different Individuals
From the results in Table VI, it was found that the accuracy

was not entirely consistent, as there were huge variations in
accuracy between each individual. This is most probably
because everyone had different voices, and there were various

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.24 APR 2024

87

distinctions in terms of tone, pitch, and loudness for each
person. Since the model was trained on only a small sample size
of voices (highly personalized), it meant that not all variety of
voices were accounted for. Hence, to improve the wake word
model further, the voice dataset will have to be significantly
expanded; and a balance between male and female datasets will
also have to be kept.

TABLE VI. WAKE WORD MODEL ACCURACY FOR DIFFERENT INDIVIDUALS
FOR 5 ATTEMPTS

Person # Gender Accuracy (%)

1 Male 20

2 Male 60

3 Male 100

4 Male 60

5 Male 80

6 Female 100

7 Female 60

8 Female 20

9 Female 40

10 Female 60

D. Accuracy for Voice Commands and Compliances

The accuracy of the voice commands is above 90%, with the
only exception being the “turn left” command which was
slightly lower at 89%, as shown in Fig. 15. The reason for its
lower accuracy is because the system would misrecognize the
word “turn left” as “turn light” during the inaccurate tries,
which may be influenced by home automation modules for
“turning on the lights”. Once the commands were identified, the
prototype would perform the task correctly without fail for any
of the valid commands given.

Fig. 15. Accuracy of different voice commands.

E. Latency

The wake word activation takes an average of 0.73 s whereby
the voice commands averaged around 1.5 s as shown in Table
VII and Fig. 16, respectively. These are acceptable response
time for wheelchair application.

TABLE VII. WAKE WORLD LATENCY

Office Average (s) Min (s) Max (s)

Response time 0.73 0.33 1.10

Fig. 16. Voice Command Latency

IV. FUTURE RECOMMENDATIONS
The voice controlled wheelchair is still a very untapped field;

thus, this project and report will indubitably add to it. However,
other than the implementations that had been demonstrated in
this report, it is noted that there are several recommendations
that will allow the project to be further elevated.

The first recommendation is to add sensors to the current
Wheelchair project. The main sensors that are recommended
will be the ultrasonic sensor and LiDAR sensor. This is because
these sensors will allow for the implementation of obstacle
avoidance features [14]. This is an important feature which was
excluded from the present project due to time constraint, but it
is a necessity for the Wheelchair if it were to be used
commercially. Adding these features will drastically improve
the safety of the wheelchair, and it will prevent countless
collisions into objects or to walls. Additionally, LiDAR also
offers the functionality of mapping out indoor rooms or home
interiors [15]. The is one of the most important features that has
to be added if the locational voice command concept were to be
implemented. This is because this function would allow the
Wheelchair to understand where exactly each room or area
would be located at; thus, minimizing possible the automation
errors that may occur.

Aside from that, it is also recommended that the motor be
changed for future implementations, as the one used in this
project was only for proof of concept. In a commercial situation,
the wheelchair would need to have utmost precision so that
accidents do not occur, and the motors will also need to be able
to handle the human weight. Other than that, it is also
recommended the Wake Word Model be further trained with
larger datasets, so that it will be able to understand the Wake
Word even when it is said with an entirely different accent.
Many large corporations have proven that an accurate Wake
Word model is possible as long as enough dataset and
computational power is prepared. Presently, a possible
candidate model to consider for the future would be OpenAI’s
whisper speech recognition model, as it was successfully
implemented on a Raspberry Pi Model B by Wechsler and was
able to perform real-time speech recognition and transcription
[16].

He et.al.: Wake Word and Speech Recognition Application on Edge Device: A Case of Improving the Electric Wheelchair

88

V. CONCLUSION
The overall performance showed the feasibility of

implementing both the wake word and speech recognition
features on an edge device. For the wake word model, tests
showed that it has a detection accuracy of slightly above 80%
when the background noise is less than 50 dB. For the speech
recognition, the system has above 80% accuracy when the
background noise is below 65 dB. Once the command has been
identified, the system registers a 100% accuracy for command
compliance. This case study would also apply to the literature
of the design and development of voice-controlled wheelchairs
or similar applications.

ACKNOWLEDGMENT
 Our highest gratitude to Motorola Solutions and Career
Services of INTI International College Penang for facilitating
and supporting this industrial employer project.

REFERENCES
[1] L. Bennett, “Maintaining arm health in wheelchair users: The need for

updated guidelines,” 2015. icord.org. https://icord.org/2015/02
/maintaining-arm-health-in-wheelchair-users-the-need-for-updated-
guidelines/ (accessed Dec. 2, 2022).

[2] NCHPAD, “Overuse Injuries in Wheelchair Users,” 2013 NCHPAD.org.
https://www.nchpad.org/96/713/Overuse~Injuries~in~Wheelchair~Users
(accessed Dec. 2, 2022).

[3] V. Khare, K. Meena, and S. Gupta, “Voice Controlled Wheelchair,”
International Journal of Electronics, Electrical and Computational
System, pp. 23-27, 2017.

[4] S. Umchid, P. Limhaprasert, S. Chumsoongnern, T. Petthong, and
T. Leeudomwong, “Voice Controlled Automatic Wheelchair,” in
The 2018 11th Biomedical Engineering International Conference,
2018. doi: 10.1109/BMEiCON.2018.8609955.

[5] T. K. Hou, Yagasena, and Chelladurai, “Arduino based voice-controlled
wheelchair," Journal of Physics: Conference Series, pp. 1-6, 2019.

[6] M. I. Malik, T. Bashir, and O. F. Khan, "Voice-Controlled WheelChair
System,” International Journal of Computer Science and Mobile
Computing, pp. 411-419, 2017.

[7] S. Anwer et al., “Eye and Voice-Controlled Human Machine Interface
System for Wheelchairs Using Image Gradient Approach,” Sensors, pp.
1-13, 2020.

[8] M. A. A. Rakib et al., “Smart Wheelchair with Voice Control for
Physically Challenged People,” European Journal of Engineering and
Technology Research, pp. 97-102, 2021.

[9] S. Sutikno, K. Anam, and A. Saleh, "Voice Controlled Wheelchair for
Disabled Patients based on CNN and LSTM," in 4th International
Conference on Informatics and Computational Sciences (ICICoS), 2020.
doi: 10.1109/ICICoS51170.2020.9299007.

[10] C. Olson, “New report tackles tough questions on voice and AI,” 2019.
Microsoft.com. https://about.ads.microsoft.com/en-us/blog/post/april-
2019/new-report-tackles-tough-questions-on-voice-and-ai (accessed Dec.
2, 2022).

[11] M. Phi, “Illustrated Guide to LSTM’s and GRU’s: A step by step
explanation,” 2018. towardsdatascience.com. https://towardsdatascience
.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-
44e9eb85bf21. (accessed Dec. 2, 2022).

[12] S. Dobilas, “LSTM Recurrent Neural Networks — How to Teach a
Network to Remember the Past,” 2022. towardsdatascience.com .
https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-
teach-a-network-to-remember-the-past-55e54c2ff22e. (accessed Dec. 2,
2022).

[13] C. Yayda and W. Hrauda, “Wake-Up Word Detection Using LSTM
Neural Networks,” Master Thesis, Graz University of Technology, 2016.

[14] OTLASERS, "Ultrasonic and Lidar Sensors for Robot Obstacle
Avoidance," Otla Sers Magazie, 17 July 2023. [Online]. Available:
https://otlasers.com/ultrasonic-and-lidar-sensors-for-robot-obstacle-
avoidance/#:~:text=Both%20ultrasonic%20and%20lidar%20sensors%2

0play%20important%20roles,detection%20and%20the%20ability%20to
%20detect%20specific%20materials.. (accessed 16 February 2024).

[15] R. Ziccardi, "The Complete Guide To LIDAR Indoor Mapping,"
Maptelligent, 15 May 2023. [Online]. Available:
https://maptelligent.com/blog/the-complete-guide-to-lidar-indoor-
mapping/. (accessed 18 February 2024).

[16] S. Wechsler, "Whisper in Real Time on Raspberry Pi: Run OpenAI's C++
Model," Toolify.ai, 23 November 2023. [Online]. Available:
https://www.toolify.ai/ai-news/whisper-in-real-time-on-raspberry-pi-
run-openais-c-model-84609. [Accessed 16 February 2024].

[17] N. MR, S. T, S. M and S. MN, "Real Time Speech Emotion Recognition
using LSTM and Raspberry Pi," in International Conference on
Computation System and Information Technology for Sustainable
Solutions (CSITSS), Bangalore, 2023.

[18] M. Bakouri, "Development of Voice Control Algorithm for Robotic
Wheelchair Using NIN and LSTM Models," Computers, Materials &
Continua 2022, vol. 73, no. 2, pp. 2441-2456, 2022.

[19] P. Fromaget, "Raspberry Pi Pros And Cons," RaspberryTips, [Online].
Available: https://raspberrytips.com/raspberry-pi-pros-and-cons/.
(accessed 16 February 2024).

[20] A. Harsha, "The Ultimate Showdown: RNN vs LSTM vs GRU – Which
is the Best?," Shiksha Online, 22 May 2023. [Online]. Available:
https://www.shiksha.com/online-courses/articles/rnn-vs-gru-vs-
lstm/#:~:text=RNNs%2C%20LSTMs%2C%20and%20GRUs%20are,of
%20memory%20cell%20and%20gates. (accessed 17 February 2024).

[21] S. Saxena, "What is LSTM? Introduction to Long Short-Term Memory,"
Analytics Vidhya, 4 January 2024. [Online]. Available:
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-
short-term-memory-lstm/. (accessed 17 February 2024).

[22] K. Supriya, A. Divya, B. Vinodkumar and G. R. Sai, "Trigger Word
Recognition using LSTM," International Journal of Engineering
Research & Technology (IJERT), vol. 9, no. 6, pp. 1-8, 2020.

	I. The Wheelchair as an Edge Device
	II. Methodology and Implementation
	A. Hardware
	B. Working Principle
	C. Deep Learning Model
	D. Training Dataset
	E. Training Process
	F. Voice Command
	G. Overall System
	H. Evaluation Methods

	III. Results and Discussions
	A. Detection Range (Controlled)
	B. Accuracy in Simulated Environment
	C. Accuracy for Different Individuals
	D. Accuracy for Voice Commands and Compliances
	E. Latency

	IV. Future Recommendations
	V. Conclusion
	Acknowledgment
	References

