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Abstract—A previously developed 4-DOF master-slave robot 
system showed that the master device was able to control the 
motion of the slave robot but due to the wired connection between 
the systems, the user must be in the same room to monitor the 
robot’s movement. In order to monitor the robot operation 
wirelessly from a distance or outside of the laboratory room, an 
IoT-based platform is desirable. With the IoT method selected, the 
interface between the application, hardware and software is 
essentially important. Each part requires specific programming 
codes to ensure transmission of data runs smoothly between the 
chosen interface platforms. MIT App Inventor was selected as the 
IoT application that uses Firebase Cloud for storing data acquired 
from the master and slave controllers. Bluetooth modules are used 
as the interface between the master and slave controllers, while 
NodeMCU ESP32 enables the Wi-Fi connectivity between all three 
i.e. the controllers, the cloud storage and the MIT App Inventor. 
As a result, selected robot data were observed to be viewable from 
the user’s mobile devices using the MIT AI2 companion 
application. The verification test with the execution of the robot 
showed that the IoT platform has successfully displayed numerical 
and graphical data of the desired robot’s joint angle and motor 
increments from the master and the slave controllers, respectively, 
based on several user’s arm gestures measured by force sensors.  
 
Index Terms—Firebase cloud, human arm gesture, IoT 
application, master-slave robot, MIT App.  

I. INTRODUCTION 
The development of master-slave arm robots has started from 

late 1970s and early 1980s, when researchers first began 
exploring the use of multiple robots for complex tasks [1]. 
Master-slave robot refers to a configuration of a master that 

 

controls a robot called “slave” through it command. The 
development of master-slave systems has advanced in many 
applications such as in industrial assembly, auxiliary medical 
treatment, extreme environments, and inspection [2] - [5].  

The advantage of operating a slave robot using a master as a 
separate device or hardware can be extended to a monitoring 
system that can be flexible for user to use. Internet of Things 
(IoT) has recently gained popularity and extensively applied for 
many applications, including automated systems and robotics.  

One example of these is an IoT system developed by [6] that 
monitors dental x-rays equipment performance for 
maintenance. When the performance of the machine starts 
deteriorating, user gets the data log of the machine parameters 
uploaded to an IoT system on the internet to determine whether 
a maintenance is needed or not. A PCB-based communication 
port module which consists of SPI interface, CAN, UART, 
USB and LAN was developed as the interface hardware for the 
x-rays system comprising of a remote controller as the master 
and the x-rays controller as the slave. A testbed that is prepared 
for deploying multiple types of robots in an IoT enabled 
environment was proposed by [7]. In order to make sure the 
ease and safe implementation of their robots in human society, 
RobotNEST allows any kind of robot operating system to be 
used by user, provides 3D LiDAR data for robot localization 
and applies 5G private networks for fast cloud access and 
wireless communication of sensor data and hardware actuation 
for the robot navigation. 

 Meanwhile, a master-slave IoT device has been developed 
by [8] for improving human walking performance based on 
actual measurement of cadence during brisk walking. The slave 
part is responsible to measure cadence parameters using IMUs 
and linear accelerometer equipped in the smart shoes that the 
user wears. The master part provides the pattern of walking 
performance as advised by therapist based on the biofeedback 
obtained from the slave IoT using Deep Neural Network model. 
Samsung smart watch was used as the IoT device to monitor 
and display the performance of user via cloud computing and 
internet communication.   

Due to the high cost for setting up expensive fabrication 
laboratories (Fab Labs) for schools and universities, an IoT 
based Fabrication-as-a-Service (FaaS) platform was developed 
[9]. It enables the students to get access to computer controlled 
tools and equipment of the fabrication laboratories via internet.  
Application programming interfaces (APIs) that they created 
allows third-party applications to access the virtual Fab Labs as 
a Web service where the configuration of the equipment as well 
as the communication among Fab Labs from widespread users 
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and locations can be implemented. Each Fab Lab employs a 
two-tier architecture, interacts with the hub, deployed in the 
cloud, and communicates with each other via a network.   

Self-adaptive software framework is another concern to ease 
IoT implementation for stable execution of the software under 
dynamic environment and software changes. An example of 
this was presented by [10] to support stable execution of the IoT 
devices with minimized human involvement under dynamic 
changes in user requirements, inserting or removing IoT 
devices, selection criteria of measurement and selection of 
environment parameters. 

A massage robot called EMMA which includes a robot arm 
and a massage end-effector was developed as an IoT device that 
can record the robot task for the analysis of the patient treatment 
[11]. Control method adopted strict safety framework that limits 
the movement speed and excess of applied forces to avoid 
danger and pain to the patient when the robot carries out the 
task. Recorded data via IoT helps physiotherapists to conduct 
and optimize the next massage treatment routine.  Similar work 
has been done by [12] where a Home-TeleBot system is 
developed occupying an IoT architecture to support healthcare 
treatment at home by a dual-arm robot called YuMi. The IoT 
framework layer is responsible to collect human motion made 
by a teleoperator who is wearing a wearable inertial motion unit 
device and transmit it to the robot via wireless 5G network. The 
IoT teleoperated robot imitates the human motions made by the 
teleoperator who can operate the device from a hospital or from 
any distance. 

At the beginning of the work, a teleoperation robot has been 
developed consisting of a master device and a 4-DOF slave 
robot. The master includes a microcontroller and several flex 
force sensors placed on a user arm’s joints, whereas the slave 
robot receives commands from the master’s movement to move 
its links accordingly. The master is required to provide the user 
gestures information i.e. the desired angle of the joints and the 
direction of joints’ rotation to the slave controller for driving 
the robot motion. However, the execution of the master-slave 
operation can only be done in the same laboratory due to the 
wired configuration between the hardware and controllers and 
therefore could not be monitored or controlled in other location. 
From the literature review, most of the studies applied IoT for 
non-robotic applications such as monitoring in the fields of 
agriculture, rehabilitation, education and machine performance. 
Due to safety and complexity of the interface system that needs 
to be established between the IoT device and hardware 
platforms, detailed publications that applied IoT as the modern 
technology approach for robot systems is quite difficult to find. 
Therefore, a development of IoT application method using MIT 
App Inventor is presented with the purpose of monitoring robot 
information from both the master and the slave robot remotely 
or from a distance. The second section of this paper presents the 
hardware specifications of the developed master-slave robot, 
the IoT system architecture and software specifications, as well 
as the interface platforms that have been selected. Next section 
explains the modifications made to the controller and software 
to enable communication between the interfaces.  
Consequently, the validation results of the proposed method are 

presented and discussed for the offline and online tests, 
followed by the conclusion in last section. 

II. METHODOLOGY 
Initially, the master as the arm’s gesture measurement system 

and the slave robot were designed and developed as the 
hardware part of the robot system. Then, the information from 
the master and slave controllers are sent to the Firebase Cloud 
to be accessible by MIT App Inventor installed on user’s 
Android devices to display the robot's information wirelessly.  

A. Phase I: Development of the Master Slave Robot 
The developed master-slave robot shown in Fig. 1 consists of 

a master which provides user arm’s gesture information and a 
4-DOF slave robot that moves according to the angle 
information from the master. The master is called wearable arm 
gesture measurement system (WAGMS) which consists of a 
controller and flex sensors positioned at several locations of 
user’s arm to measure the bending angles of user’s joints [13]. 
The sensor measurements mapped to the angles of user’s arms 
are transmitted from the master’s controller to the slave’s 
controller via HC-05 Bluetooth Module for actuating the servo 
motors of the robot joints. The slave robot is a modified design 
from a commercial arm robot with fully actuated links 
consisting of a shoulder, elbow, wrist and a gripper type end 
effector [14].  

 

 
a) The assembled WAGMS. 

 

b) The modified design of 4-DOF slave robot. 
 
Fig. 1. The developed WAGMS and 4-DOF robot [13], [14]. 
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They are arranged in sequential order where the first three 
joints rotate around the same axis x, followed by the fourth 
joint that provides the open-and-close motion of the gripper. 
The specifications of the slave and the master are tabulated in 
Table I and Table II, respectively. Fig. 2  shows the flowchart 
for the development of the 4-DOF robot. 

TABLE I . COMPONENT LIST OF ROBOT ARM [14] 

No  Component Specification 
1  Actuator • MG996R Servo Motor: Max Stall 

Torque at 11 kg/cm (6V) 
• LDX-218 Full Metal Gear Digital 

Servo: Max Stall Torque17 kg/cm 
(7.4V) 

2  Controller Arduino Uno R3 
3  Feedback Adafruit PCA9685 16-Channel Servo 

Driver 
4  Input Gesture movement based from the flex 

sensor 
5  DOF 4-DOF 
6  Programming 

Software 
Arduino IDE 

7  Interface HC-05 Bluetooth Module: Communicate 
with the sensor system 

TABLE II. SPECIFICATIONS OF WAGMS [13] 

 

 
Fig. 2. Phase I involving the development of the master-slave 
robot [14]. 

B. Phase II: Setting up the IoT interface platform and 
programming the codes 

As shown in Fig. 3, the steps involved in phase II comprises 
of selection of IoT application, replacement of previous 
microcontrollers, writing the codes for the new ESP32 
microcontroller, establishing the interface between the 
hardware and software platforms, followed by creating the 
programming codes for each of the IoT platforms, and finally 
the validation test in offline and online modes with the robot. 

 
1) Replacement of Microcontroller and Establishing the IoT 
Interface Platform 

Firstly, two platforms for developing the applications have 
been explored i.e. Flutter and Android Studio. However, 
these platforms can be quite tough for designing mobile 
applications without prior programming skills and they take 
longer time to develop. Following that, the MIT App 
Inventor has been explored where it is found to be much 
easier to be implemented. MIT App Inventor is a free, 
browser-based and blocks-based programming platform 
that allows creation of personalized mobile apps and access 
from any device [15], [16]. 

Next, the replacement of previous WAGMS master and 
slave robot’s Arduino Uno and Nano controllers with 
NodeMCU ESP32 microcontroller was required in order to 
have Wi-Fi connectivity for the data transfer from both parts 
to the cloud database. Programming codes in NodeMCU 
ESP32 of the master carries the functions for receiving and 
processing data from the flex sensor before sending it via 
Bluetooth interface to the slave robot’s controller. The 
bending actions measured by flex sensors are converted to 
digitized values and represented in terms of bending angle 
which is used by the slave controller to calculate the motor 
increments before sending pwm signals to actuate the 
motor. The specifications and detailed information of the 
NodeMCU ESP32 are tabulated in Table III.  

For data transfer and storage, the system uses Firebase 
Cloud technology. The NodeMCU ESP32 board's built-in 
Wi-Fi capabilities enables real-time data transfer from the 
master and slave controllers to the Firebase Cloud as a 
secure centralized data storage site. The system architecture 
of the IoT based master-slave robot system in Fig. 4 shows 
Bluetooth module is used for communication between the 
master and slave controller boards whereas Wi-Fi 
communication is used by the NodeMCU ESP32 board to 
send data to Firebase Cloud, Firebase Cloud for data storage 
and retrieval, and MIT App Inventor for visualizing the 
selected data as IoT application. After installing MIT AI2 
Companion application on user’s mobile devices, these data 
can be accessed by user in real time during the operation of 
the master-slave robot.  

The Bluetooth module is linked to the NODEMCU 
ESP32 microcontroller board via UART, and the 
NodeMCU ESP32 board uses pins labeled TX (transmit) 
and RX (receive) for computer communication. Correct 
connection between the boards to the communication pins 
is important to ensure successful data transfer and uploads 
between the hardware and software platforms. 

 

Component Description 

Controller Arduino Nano 

Sensor Flex sensor to provide input signal 

Interface Bluetooth Module (HC-05) to transmit signal 
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Fig. 3. Phase II steps consisting of the programming of 
different boards, database and MIT App Inventor. 

 
 
 
 
 
 

TABLE III. ESP32 SPECIFICATIONS 

Features ESP32 

MCU Xtensa Dual-Core 32-bot LX6 600 
DMIPS 

Frequency 80-240 MHz 

Wi-Fi 802.11 b/g/n 

Bluetooth BL v4.2, BLE 

SRAM 512kB 

Flash SPI Flash, up to 16 MB 

GPIO 36 

HW/SW PWM 1/16 channels 

SPI/12C/I2S/UART 4/2/2/2 

ADC 12 bits 

CAN 1 

Ethernet Mac Interface 1 

  
 

 

Fig. 4. Master-Slave robot monitoring system architecture. 
 
 
2) Designing MIT App Inventor and Firebase Database 
Console 

The Realtime Database page of the Firebase Console shown 
in Fig. 5 is important for managing the uploaded data in 
Firebase Cloud system effectively. Here, four position angles 
of the arm as instructed by WAGMS as reference to the slave 
robot have been selected to be stored. Besides, the motor 
increments calculated by the slave controller was also selected 
to be stored in the database. Meanwhile, MIT App Inventor 
programming platform consists of three main components: the 
"Designer" (Fig. 6) for creating the user interface, the "Blocks 
Editor" (Fig. 7) for designing the application, and the "AI 
Companion" for displaying the application on user’s mobile 
devices. 

 
3) Validation of MIT Inventor App with Robot Values 

The proposed method is validated by comparing the robot 
information displayed on the MIT App Inventor with the 
movement of the master-slave robot at several angles. Firstly, a 
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set of desired position angles 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  are given to the slave 
microcontroller to calculate the motor increments and the 
comparison is made from the values obtained from the serial 
monitor of Arduino IDE window with the Firebase window to 
prove the success of data transmission between the 
microcontroller and the cloud storage platform. Secondly, 
𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (set in integer data type) for several angles at 0°, 45°, 
and 90° measured by WAGMS in an experiment were used by 
the slave microcontroller to calculate the motor increments for 
each joint of the shoulder, elbow, wrist and gripper of the slave 
robot, where these 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  and motor increments are to be 
displayed on the MIT App Inventor’s emulator.  

 

 

Fig. 5. The real-time database page. 
 

 
Fig. 6. Design editor page for specifying the display layout. 
 

 
Fig. 7. Block editor for programming MIT App Inventor. 

III. RESULTS AND DISCUSSION 

A. Modified Hardware and IoT Software 
The Arduino Nano (Master) and Uno (Slave) were replaced 

with NodeMCU ESP32 microcontrollers that can provide the 
wireless communication feature between the boards with the 
Firebase Cloud storage. Fig. 8 and Fig. 9 show the replacement 
of the Arduino boards with NodeMCU ESP32.  

Then, after connecting MIT App Inventor (on PC) and MIT 
AI2 Companion (on mobile device) to the same Wi-Fi network, 
MIT AI2 Companion application will display two options of 
linking both devices i.e. via coding or QR code scanning for the 
user to choose (Fig. 10a). This will then bring user to the home 
screen of the application that has been designed with MIT App 
Inventor as shown in Fig. 10b. 

 

 

 

a) Before (Arduino Nano). b) After (NodeMCU ESP32). 

Fig. 8. WAGMS master part. 
 

  

a) Before (Arduino Uno R3). b) After (NodeMCU ESP32). 

Fig. 9. The slave part. 
 

 

 

a) Linking MIT AI2 
Companion with the 
designed application. 

b) Application’s home screen on  
user’s mobile device. 

Fig. 10. Home screen view on user’s mobile device. 
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B. Validation of MIT Inventor App with Robot Values  
The joint reference values of the WAGMS appeared on the 

serial monitor of Arduino IDE were compared to the Firebase's 
real-time database to confirm the data transferred from the 
hardware controllers to the cloud. As shown in Fig. 11, the data 
transfer run smoothly to confirm the feasibility of the interface 
and communication between the wireless platform. The 
changes of  𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  value versus time on a line graph shown in 
Fig. 12 allows user to monitor the reference angle position from 
WAGMS that are sent to the slave controller. 

 

 

a) Serial monitor Arduino IDE. 

 
b) Firebase Realtime Database 

Fig. 11. Comparing the transmitted values. 
 

 
Fig. 12. Line graph of the desired angle from the master 
controller. 

 

Table IV shows the comparison between the 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  values 
and motor increments displayed on MIT Inventor App’s 
emulator (on the left column) and the robot’s movement for the 
respective angles of 0°, 45°, and 90° measured by WAGMS for 
the arm gestures made by the user (on the right column). The 
results showed that the values from WAGMS can be displayed 
on MIT app in real time and the calculated motor increments 
moved the robot joints’ accordingly. Hence, this proves the 
applicability of the designed application to display the robot 
information via IoT method during the master-slave robot 
operation.  

TABLE IV. COMPARISON RESULTS BETWEEN MIT APP INVENTOR AND 
MASTER-SLAVE ROBOT 

MIT display Robot Movement 

 

 

 

 

 

 

 
 

 
 

 
Position tracking accuracy for the robot is not discussed in 

this paper as the evaluation of robot control performance is 
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beyond the scope of this work which is focusing on the IoT 
monitoring for the operation of the robot via network 
communication. Therefore, evaluation for different angle 
movements of robot is not necessary because instructions by the 
user’s gesture will provide robot information to be displayed on 
MIT application as they are calculated not on the IoT platform 
but by both robot controllers. 

 

IV. CONCLUSION 

The work has shown the implementation of IoT using MIT 
Inventor App and cloud based storage for a master-slave robot 
system. Robot information such as the desired joint position and 
the instructed motor increments have been successfully 
displayed on the user’s mobile devices which proves the 
feasibility of the IoT monitoring of the robot via wireless 
communication interface between the master and slave 
microcontrollers, cloud storage platform and the user’s mobile 
device. This approach can be further improved to embed 
bilateral communication on IoT system in a less interrupted 
network environment for robot monitoring information and 
instructing robot from user devices wirelessly and remotely. 
Moreover, informative graphs and analysis of the robot 
performance can also be added to further elevate the advantage 
of using IoT approach for robot control in the future study.  
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