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 The Pollaczek-Khintchine formulas are one of the best and most widely 
used strategies in the analysis of non-markovian standard or retrial 
queuing systems with a single server and a general service law. This is 
particularly the case for classical M/G/1 or M/G/1-R queuing systems 
because these formulas establish a direct link between the mean number 
of customers in the system and two first moments of the general service 
law. The Pollaczek-Khintchine formulas generally allow to evaluate any 
performance measure Ψ of classical M/G/1-R queuing system by a 
formula such as:Ψ = f(λ, θ,m1, m2), where λ, θ,m1, m2 are respectively 
the operating parameters of the system and the two first moments 
mentioned above. In a fuzzy environment, the literature shows that 
researchers simply resort to Zadeh's extension principle to obtain fuzzy 
formula from the classical version above. Instead of doing this to 
evaluate the performance measures of a non-Markovian fuzzy queuing 
system denoted FM/FG/1-FR, we have shown in this text that it is 
possible to derive fuzzy formulas of the kind:    Ψ̃ = f̃(�̃�, 𝜃m̃1, m̃2), 
which are an emanation of the fuzzy generating functions of stationary 
distributions of the number of customers in orbit and in the system; and 
in which the fuzzy moments of order 1 and 2 follow directly from the 
fuzzy distribution function of the general service law. This is the 
originality of this paper and its contribution is to show how Pollakzek-
Khintchine fuzzy formulas can be constructed from these two generating 
functions. The formulas thus obtained are the same as those obtained 
from the classical versions by extension according to Zadeh's extension 
principle. So, they can be validly applied in the evaluation of 
performance measures of the fuzzy retrial queuing system FM/FG/1-FR. 
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1. INTRODUCTION 

The Pollaczeck-Khinchine formulas are one of the most important mathematical tools for queuing theory. 

They are widely used in the analysis of performance measures of classical non-markovian standard queuing 

systems M/G/1 or retrial queuing systems M/G/1-R with a single server and a general service law (Boussaha 

et al., 2023; 2022; Santhi & Epsya, 2022). 

There are also several studies in the literature on the analysis of fuzzy non-markovian standard 

queuing systems FM/FG/1 or retrial queues FM/FG/1-FR that have used these Pollaczeck-Khintchine 

formulas (Saritha et al., 2018; Pramela & Kumar, 2019; Narayanamoorthy et al., 2020; Merlyn et al., 2021; 
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Adia et al., 2022; Ritha & Rajeswari, 2022: Kannadasan & Padmavathi, 2022; Lakshmi et al., 2022).These 

queuing systems are characterised by a fuzzy markovian arrival process, a fuzzy general service law and a 

fuzzy call back process, symbolised by the letter F for "Fuzzy" in English.  

Some of the works cited have studied these queuing systems using the 𝛼-cuts method (Saritha et al., 

2018; Pramela & Kumar, 2019; Merlyn et al., 2021; Kannadasan & Padmavathi, 2022), others by the L-R 

method L-R (Narayanamoorthy et al., 2020; Adia et al., 2022; Ritha & Rajeswari, 2022; Lakshmi et al., 

2022), others once more using the DSW algorithmic approach (Shanmugasundaram & Venkatesh, 2016). 

Essentially used to evaluate the mean number of units in orbit and the mean number of customers in 

the system, the Pollaczeck-Khintchine formulas establish a direct link between these performance measures 

and the first two moments of the law of the general service law (Adia et al., 2022; Lakshmi et al., 2022). 

In practice, in order to evaluate a given performance measure, most researchers use the fuzzy version 

of the classical Pollaczeck-Khintchine formula of the targeted characteristic by a simple extension 

according to the Zadeh principle. Indeed, the Pollaczeck-Khintchine formulas for the mean number of 

customers in orbit and the mean number of customers in an M/G/1-R system are given respectively by the 

relations (Boussaha, 2023): 

NO =
𝜆2𝑚2

2(1−𝜌)
+

𝜆𝜌

𝜃(1−𝜌)
                                                                                                                  (1) 

N = 𝜌 +
𝜆2𝑚2

2(1−𝜌)
+

𝜆𝜌

𝜃(1−𝜌)
                                                                                                             (2) 

 

which are of the form: 

N = f(λ, θ,m1, m2), 

where λ, θ,m1, m2 are respectively the operating parameters, the traffic rate in the system and the first two 

moments of the general service law (with 𝜌 = 𝜆𝑚1). Researchers have then tendency to use directly Zadeh's 

extension principle to write the corresponding fuzzy version:  

Ñ = f̃(�̃�, �̃�, m̃1, m̃2),                                                                                                                  (3) 

where these �̃�, �̃�, m̃1, m̃2 are respectively the fuzzy descriptor parameters of the system and the fuzzy 

moments of the general service law. 

In this paper, our step is original by the fact that the relation (3) above can be elaborated by the 

generating functions approach instead of simply extending the classical formulas (1) and (2). 

In concrete terms, we want to show how we can construct the two Pollaczeck-Khintchine formulas 

below from the generating functions of the stationary distributions of the number of customers in orbit and 

in the system: 

    ÑO =
λ̃2⨀m̃2

2(1−ρ̃)
⊕

λ̃⨀ρ̃

θ̃⨀(1−ρ̃)
                                                                                                          (4) 

Ñ = ρ̃ ⊕
λ̃2⨀m̃2

2(1−ρ̃)
⊕

λ̃⨀ρ̃

θ̃⨀(1−ρ̃)
                                                                                                     (5) 
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Being the same as those derived from the classical formulas by extension of Zadeh extension priciple, 

these formulas allow us to evaluate respectively the mean number of clients in orbit and the mean number 

of clients in the FM/FG/1- FR queuing system respectively. 

This paper is organised as follows: section 2 presents some preliminary notions. Section 3 discusses 

mainly the Pollaczek-Khintchine formulas. Section 4 closes the article with a conclusion.  

2. PRELIMINARIES 

2.1 Definitions  

Definition 1: A fuzzy set Ã of a universe X⊂ ℝ is given by a membership function μÃ defined on X into 

[0, 1] by: 

μÃ(x) = {

0                          if x ∉ A  (not at all)

r ∈ ]0, 1[            if x ∈ A (partially)

1                             if x ∈ A  ( totally)
 ,                                                                    (6) 

 

where μÃ(x) indicates the degree to which the element x belongs to the set Ã. 

The main elements that characterise a fuzzy set Ã are: 

• Its α-cuts or parametic representations: 

 Ãα = {x ∈ X, μÃ(x) ≥ α } ; 

• Its support:  

supp(Ã) = {x ∈ X, μÃ(x) > 0} ; 

 

• Its height: 

h(Ã) = max{μÃ(x), x ∈ X} ; 

• Its kernel: 

kernel(Ã) = {x ∈ X, μÃ(x) = 1}. 

Definition 2: A fuzzy number is a fuzzy subset Ã that is: 

• Normal of universe ℝ (h(Ã) = 1) ;  

• Convex (∀x, y, ∀λ ∈ [0, 1], μÃ(λx + (1 − λy)) ≥ min{μÃ(x), μÃ(y)}) ; 

• Such that kernel(Ã) ≠  ∅, supp(Ã) and its  Ãα are bound intervals of the set ℝ. The set of all 

fuzzy numbers is generally denoted by 𝔽(ℝ). 

Definition 3: Any m ∈ supp(Ã) such that μÃ(m) = 1 is called the modal value or mode of the fuzzy number 

Ã. It is the element of the support of Ã with higher possibility. 

Definition 4: Let X, Y be two universes and �̃�(𝑌) the set of all fuzzy subsets on Y. The application 

𝑓 : 𝑋 ⟶ �̃�(𝑌), 𝑥 ↦ �̃� = 𝑓 (𝑥) is a fuzzy function if,  
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∀ (𝑥, 𝑦) ∈ 𝑋×𝑌,                  𝜇�̃�(𝑦) = 𝜇�̃�(𝑥, 𝑦)                                                                                            (7) 

 

(�̃� being a fuzzy relation between the elements of 𝑋×𝑌). 

 

The Zadeh’s extension principle 

This principle extends any classical binary operation ∗ in ℝ to a fuzzy binary operation ⊛ in 𝔽(ℝ) such 

that ∀Ã, B̃ ∈ 𝔽(ℝ), ∀z ∈ ℝ : 

μÃ ⊛B̃(z) = sup{min{μÃ(x), μB̃(y)} ∕ x, y ∈ ℝ, x ∗ y = z}                                                    (8) 

Definition 5: Let E = E1 × …× En and F be two classical sets. Let f be also an application from E into F.  

Zadeh's extension principle creates another application f̃ de �̃�(E) dans �̃�(F) such that ∀Ã ∈ �̃�(E), ∃B̃ ∈

�̃�(F) :  f̃(Ã) = B̃ and ∀y ∈ F, we have : 

{
μB̃(y) = supx∈E f(x)⁄ =y{min{μÃ1(x1), … , μÃn(xn)}} si f

−1(y) ≠ ∅ 

μB̃(y) = 0                                                                                  otherwise
                                    (9) 

where f−1 is the reciproque of f ; �̃�(E) et �̃�(F) are respectively the sets of all fuzzy subsets of E and F. 

Definition 6: Let 𝑓(𝑥1, … , 𝑥𝑛) be a classical function of ℝ𝑛 into ℝ  and   �̃�1, … , �̃�𝑛 𝒏 fuzzy subsets of ℝ.  

Zadeh's extension principle allows us to induce from 𝑓(𝑥1, … , 𝑥𝑛)  a fuzzy function 𝑓 : 𝔽𝑛(ℝ)  ⟶  𝔽(ℝ) 

such as 𝑓 (�̃�1, … , �̃�𝑛) be a fuzzy subset �̃� of ℝ of which : 

➢  The membership function is defined  ∀𝑦 ∈ ℝ|𝑓(𝑥1, … , 𝑥𝑛) = 𝑦  by : 

𝜇�̃�(𝑦) = {
𝑠𝑢𝑝

(𝑥1,…,𝑥𝑛)
{min{𝜇𝐴1(𝑥1), … , 𝜇𝐴𝑛(𝑥𝑛)}}   if  𝑓

−1(𝑦) ≠ ∅

0                                                               if  𝑓−1(𝑦) = ∅
                                          (10) 

➢ The parametic representation is given  ∀𝛼 ∈ [0, 1] by : 

�̃�(𝛼) = (𝑓 (�̃�1, … , �̃�𝑛))
𝛼
= 𝑓 (�̃�1(𝛼), … , �̃�𝑛(𝛼))                                                              (11) 

This definition establishes a compatibility between Zadeh's extension principle approach and the arithmetic 

of alpha-cuts by transforming the classical operations (+,−,×,÷) into fuzzy arithmetic operations (⊕,⊖
,⊙,⊘) of α-cuts. 

Definition 7: 𝑓(𝑥) is said to be a fuzzy function of a classical variable if  𝑓 : ℝ ⟶  𝔽(ℝ). 

 

 

2.2 Generating functions 



218 Adia Leti Mawa & Mabela Makengo Matendo. / Journal of Computing Research and Innovation (2024) Vol. 9, No. 1 

https://doi.org/10.24191/jcrinn.v9i1

 

 ©Authors, 2024 

The generating functions of the stationary distributions of the number of customers in-orbit and in 

the classical M/G/1-R system with poissoniean arrival rates λ and exponential call back rate θ are given 

by (Boussaha, 2023): 

𝑃(𝑧) =
(1−𝜌)(1−𝑧)

𝐴(𝑧)−𝑧
 𝑒𝑥𝑝 {

𝜆

𝜃
∫

1−𝐴(𝑢)

𝐴(𝑢)−𝑢
 𝑑𝑢

𝑧

1
}                                                                               (12) 

𝑄(𝑧) =
(1−𝜌)(1−𝑧)𝐴(𝑧)

𝐴(𝑧)−𝑧
 𝑒𝑥𝑝 {

𝜆

𝜃
∫

1−𝐴(𝑢)

𝐴(𝑢)−𝑢
 𝑑𝑢

𝑧

1
}                                                                         (13) 

where  A(z) = B∗(λ − λz) is the generating function of the number of primary customers arriving in the 

system during the service of a client in the server,  B∗(s) is the Laplace transform of the general service 

law. 

3. POLLACZEK-KHINTCHINE FORMULAS 

As announced above, we will work out the fuzzy Pollaczec-Khintchine formulas based on the generating 

functions of the stationary distributions of the number of customers in orbit and in the system. 

It is a matter of writing formula (4) and (5) in the form: 

Ζ̃ = 𝑓(�̃�, �̃�, �̃�1, �̃�2), 

where 𝜆 ̃ and �̃� are the parameters for the poissoniean arrival of primary clients in the system and exponential 

call back rate, �̃�1 and  �̃�2 are the first moments of the general service law.  

This strategy is justified by the fact that the operating parameters  x̃1, … , x̃n being fuzzy, the distribution 

function of the service law of the queuing system FM/FG/1-FR is a fuzzy function induced by the fuzziness 

of these parameters. By denoting it B̃(t), it opens the way to our approach by the following definition: 

Definition 8: We call fuzzy distribution function of a general service law, the function B̃(t) of classical 

variable 𝑡, induced by the fuzzy character of the system's operating parameters.   

Lemma1: Let G be the general service law of a fuzzy non-markovian queuing system with distribution 

function �̃�(𝑡). Then, the moments of order 1 and 2 of the law G are fuzzy quantities obtained by a classical 

derivative of the fuzzy Laplace transform of its distribution function at the point �̌� = 0. 

Proof: Let T be the continuous random variable that measures the length of service of a client supported 

by the server. Its repartition function is nothing else than the function B̃(t). The Laplace transform of this 

random variable T is a fuzzy function of classical variable s finite by: 

�̃�∗(𝑠) = ∫ 𝑒−𝑠𝑡�̃�(𝑡)𝑑(𝑡)
+∞

0
,                                                                                                 (14) 

where the function �̃�(t) is nothing else than the classical derivative of the repartition function B̃(t) : 

�̃�(𝑡) =
𝑑�̃�(𝑡)

𝑑𝑡
.                                                                                                                          (15) 

The moments of order 𝑘 of the random variable T are given (Baynat B., 2000) by :  
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�̃�𝑘 = (−1)𝑘
𝑑𝑘�̃�∗(𝑠)

𝑑𝑠𝑘
(0)                                                                                                         (16) 

where again, the expression 
𝑑�̃�∗(𝑠)

𝑑𝑠
  is a classical derivative of  �̃�∗(𝑠) with respect to variable 𝑠. 

Hence the following results: 

�̃�1 = (−1)
𝑑�̃�∗(𝑠)

𝑑𝑠
(0)      et    �̃�2𝑑𝑒 = (−1)2

𝑑2�̃�∗(𝑠)

𝑑𝑠2
(0)                                                     (17) 

  ∎ 

Corollary 1: The traffic rate in the fuzzy queuing system is written as follows: 

�̃� = �̃�⨀�̃�1                                                                                                                             (18) 

Lemma 2: Let FM/FG/1-FR be a fuzzy retrial non-Markovian queuing system with poissoniean arrivals of 

rate 𝜆 ̃ and general service law.  

Then the probability generating function of the number of customers arriving in the system during the 

service time interval of a client (handled by the server) is given by: 

�̃�(𝑧) = �̃�∗(�̃� − �̃�𝑧)                                                                                                               (19) 

where �̃� and �̃�(𝑡) are respectively the fuzzy rate of primary customers arrival and the distribution function 

of general service law. 

Proof: Let V be the random variable which measures the number i of primary customers arrives s in the 

system during the service time interval of (𝑛 + 1) 

𝑖è𝑚𝑒 customer.  The probability distributions of that variable are defined by: 

ℙ[𝑉 = 𝑖] = �̃�𝑖 = ∫ 𝑒−𝜆𝑡
(𝜆𝑡)

𝑖

𝑖!
�̃�(𝑡)𝑑(𝑡)

+∞

0
                                                                             (20) 

Consequently, the generating function of these probabilities is a fuzzy function of classical variable 𝑧 

defined by: 

�̃�(𝑧) = ∑ �̃�𝑖𝑧
𝑖+∞

𝑖=0 = ∑ (∫ 𝑒−𝜆𝑡
(𝜆𝑡)

𝑖

𝑖!
�̃�(𝑡)𝑑(𝑡)

+∞

0
) 𝑧𝑖+∞

𝑖=0   

= ∫ 𝑒−𝜆𝑡 (∑
(𝜆𝑧𝑡)

𝑖

𝑖!

+∞
𝑖=0 ) �̃�(𝑡)𝑑(𝑡)

+∞

0
= ∫ 𝑒−𝜆𝑡𝑒 �̃�𝑧𝑡�̃�(𝑡)𝑑(𝑡)

+∞

0
  

= ∫ 𝑒−𝜆𝑡𝑒𝜆𝑧𝑡�̃�(𝑡)𝑑(𝑡)
+∞

0
= ∫ 𝑒−(𝜆−𝜆𝑧)𝑡�̃�(𝑡)𝑑(𝑡)

+∞

0
= �̃�∗(�̃� − �̃�𝑧). 

Hence the result.                                                                                          ∎   
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 Corollary 2: This result gives the fuzzy expression of the generating functions given by (12) and (13). 

They thus become fuzzy functions of classical variable z defined by: 

�̃�(𝑧) = (1 − �̃�)
1−𝑧

𝐴(𝑧)−𝑧
𝑒𝑥𝑝 {

𝜆

�̃�
∫

1−𝐴(𝑢)

𝐴(𝑢)−𝑢
𝑑𝑢

𝑧

1
}                                                                          (21) 

�̃�(𝑧) = (1 − �̃�)
(1−𝑧)𝐴(𝑧)

𝐴(𝑧)−𝑧
𝑒𝑥𝑝 {

𝜆

�̃�
∫

1−𝐴(𝑢)

𝐴(𝑢)−𝑢
𝑑𝑢

𝑧

1
}                                                                      (22) 

In a simpler way, these generating functions can be written down as follows:  

�̃�(𝑧) =
(1−�̃�)(1−𝑧)

𝐴(𝑧)−𝑧
𝑒𝑥𝑝 {

𝜆

�̃�
ℎ̃(𝑧)}                                                                                             (23) 

  �̃�(𝑧) =
(1−�̃�)(1−𝑧)𝐴(𝑧)

𝐴(𝑧)−𝑧
𝑒𝑥𝑝 {

𝜆

�̃�
ℎ̃(𝑧)}                                                                                        (24) 

with:  

ℎ̃(𝑧) = ∫
1−𝐴(𝑢)

𝐴(𝑢)−𝑢
𝑑𝑢

𝑧

1
.                                                                                                             (25) 

Note : It is implied that, for reasons of economy and efficiency , all arithmetic operations contained in (21) 

and (22) are fuzzy arithmetic operations, except for those concerning the classical variable z or on the 

classical numbers: e.g. 1 −  𝑧, 2𝜌 , 𝜆 𝑧 etc. It is the same for every operation that flows from them. 

These fuzzy arithmetic operations will only be restored in the final stages of the results generated by these 

functions. 

 

Theorem: Let �̃�(𝑧) and �̃�(𝑧) be the generating functions for the number of clients in orbit and in the 

FM/FG/1-FR queuing system respectively. Then, the mean numbers of customers in orbit and in the system 

are given by formulas: 

ÑO =
λ̃2⨀m̃2

2(1−ρ̃)
⨁

λ̃⨀ρ̃

θ̃⨀(1−ρ̃)
                                                                                                           (26) 

  Ñ = ρ̃⨁
λ̃2⨀m̃2

2(1−ρ̃)
⨁

λ̃⨀ρ̃

θ̃⨀(1−ρ̃)
                                                                                                       (27) 

Proof: Let us first note the following observations before getting into the heart of the demonstration: 

1. P̃(z) and Q̃(z)are fuzzy functions, but of classical variable z. Any derivative of these functions 

with respect to the variable z is an operation of classical derivation where any fuzzy quantity 

contained therein is to be considered as a constant ; 

2. As P̃(z) and Q̃(z) are generating functions of the number of customers in orbit and in the system, 

we have by definition  

NO =
dP̃(z)

dz
(1) and  N =

dQ̃(z)

dz
(1)                                                                                         (28) 

            in classical sence of derivative with respect to the variable z; 
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3. Let h be a classical function defined by  h(t) = ∫ f(u)du
t

1
. 

 

By definition of integral’s derivative, we have: 

 

h(1) = 0  et  
dh(t)

dt
= h′(t) = f(t)                                                                      (28) 

 

Consequently, the function  h̃(z) = ∫
1−Ã(u)

Ã(u)−u
 du

z

1
  is such that: 

 

h̃(1) = 0  et  h̃′(𝑧) =
1−Ã(z)

Ã(z)−z
                                                                              (29)  

4. From relation (19), we have: 

 

•  Ã(1) = B̃∗(0) = 1   (Normalization condition of b̃(t))                                               (30) 

• Ã′(1) = (−λ̃). (B̃∗)
′
(0) = λ̃⨀m̃1 = ρ̃                                                                        (31) 

• Ã′′(1) = λ̃2. (B̃∗)
′′
(0) = λ̃2⨀m̃2                                                                                 (32) 

• h̃′(1) =
ρ̃

1−ρ̃
   (By Hospital's rule)                                                                                (33) 

 

5. The functions P̃(z) and Q̃(z) in relation (21) and (22) are such that P̃(1) and Q̃(1) are indefinite 

forms 
0

0
  which must be removed by the Hospital’s rule as follows : 

• P̃(1) = (1 − ρ̃)

((1−𝑧)𝑒

λ̃

θ̃
h̃(z)

)

′

(Ã(z)−z)
′ (1) 

= (1 − ρ̃)
(−1+(1−𝑧)

λ̃

θ̃
h̃′(𝑧))𝑒

λ̃

θ̃
h̃(z)

Ã′(𝑧)−1
(1) = (1 − ρ̃)

−1

Ã′(1)−1
  

= (1 − ρ̃)
−1

ρ̃−1
= 1                                                                  (34) 

• Q̃(1) = (1 − ρ̃)

((1−z)Ã(z)𝑒

λ̃

θ̃
h̃(z)

)

′

(Ã(z)−z)
′ (1) 

= (1 − ρ̃)
(−Ã(z)+(1−𝑧)Ã′(𝑧)+(1−𝑧)Ã(z)

λ̃

θ̃
h̃′(𝑧))𝑒

λ̃

θ̃
h̃(z)

Ã′(𝑧)−1
(1)  

= (1 − ρ̃)
−Ã(1)

Ã′(1)−1
= (1 − ρ̃)

−1

ρ̃−1
= 1                                 (35)  

 

(i) To better calculate the derivative  
dP̃(z)

dz
(1), let us write the expression P̃(z) of relation 

(23) in the following form : 

P̃(z)(Ã(z) − z) = (1 − ρ̃)(1 − z)e
λ̃

θ̃
h̃(z)

. 

 

Then, let's derive it member to member to get: 

(P̃(z)(Ã(z) − z))
′

= ((1 − ρ̃)(1 − z)e
λ̃

θ̃
h̃(z)

)

′

. 

The derivative of the first member gives:  
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P̃′(z)(Ã(z) − z) + P̃(z)(Ã′(z) − 1) ; 

 

That of the second member gives: 

 

(1 − ρ̃) (−e
λ̃

θ̃
h̃(z)

+ (1 − z)
λ̃

θ̃
h̃′(z)e

λ̃

θ̃
h̃(z)

). 

 

This allows us to pull: 

 

P̃′(z) =

−P̃(z)(Ã′(z)−1)+(1−ρ̃)(−e

λ̃

θ̃
h̃(z)

+(1−z)
λ̃

θ̃
h̃′(z)e

λ̃

θ̃
h̃(z)

)

Ã(z)−z
=

N(z)

D(z)
. 

At the point 𝑧 = 1, we obtain an indefinite form  
0

0
  as the value of P̃′(1) and that we solve in a traditional 

way by the Hospital’s rule: 

• N′(z) = −P̃′(z)(Ã′(z) − 1) − P̃(z)Ã′′(z) + (1 − ρ̃) (−
λ̃

θ̃
h̃′(z)e

λ̃

θ̃
h̃(z)

−
λ̃

θ̃
h̃′(z)e

λ̃

θ̃
h̃(z)

+ (1 −

z)
λ̃

θ̃
h̃′′(z)e

λ̃

θ̃
h̃(z)

+ (1 − z) (
λ̃

θ̃
h̃′(z))

2

e
λ̃

θ̃
h̃(z)

). 

This gives to point z = 1 the value: 

N′(1) = −P̃′(1). (ρ̃ − 1) − λ̃2. m̃2 − 2λ̃.
ρ̃

θ̃
. 

• D’(z) = Ã′(z) − 1  et  D’(1) = ρ̃ − 1. 

Consequently, we have: 

P̃′(1) =
N′(1)

D’(1)
=

−P̃′(1).(ρ̃−1)−λ̃2.m̃2−2λ̃.
ρ̃

θ̃

ρ̃−1
= −P̃′(1) −

λ̃2.m̃2

ρ̃−1
− 2

λ̃.
ρ̃

θ̃

ρ̃−1
  

or  

2P̃′(1) =
λ̃2.m̃2

(1−ρ̃)
+ 2

λ̃.ρ̃

θ̃.(1−ρ̃)
. 

Hence: 
dP̃(z)

dz
(1) = P̃′(1) =

λ̃2⨀m̃2

2(1−ρ̃)
⨁

λ̃⨀ρ̃

θ̃⨀(1−ρ̃)
.                             (36) 

 

(ii) Samelly, to better calculate the derivative of  
dQ̃(z)

dz
(1),   let us write Q̃(z) of relation (24) in the 

following form: 

Q̃(z)(Ã(z) − z) = (1 − ρ̃)(1 − z)Ã(z)e
λ̃

θ̃
h̃(z)

  

Then, let’s derive it member to member to say: 

(Q̃(z)(Ã(z) − z))
′

= ((1 − ρ̃)(1 − z)Ã(z)e
λ̃

θ̃
h̃(z)

)

′

. 

The derivative of the first member gives:  

Q̃′(z)(Ã(z) − z) + Q̃(z)(Ã′(z) − 1) ; 

That of the second member gives: 
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(1 − ρ̃) (−Ã(z)e
λ̃

θ̃
h̃(z)

+ (1 − z)Ã′(z)e
λ̃

θ̃
h̃(z)

+ (1 − z)Ã(z)
λ̃

θ̃
h̃′(z)e

λ̃

θ̃
h̃(z)

). 

 

After equalization of these two derivatives, we can write the following relation: 

 

Q̃′(z)(Ã(z) − z) = −Q̃(z)(Ã′(z) − 1) + (1 − ρ̃) (−Ã(z)e
λ̃

θ̃
h̃(z)

+ (1 − z)Ã′(z)e
λ̃

θ̃
h̃(z)

+ (1 −

z)Ã(z)
λ̃

θ̃
h̃′(z)e

λ̃

θ̃
h̃(z)

)  ; 

Let be, 

 

Q̃′(z) =

−Q̃(z)(Ã′(z)−1)+(1−ρ̃)(−Ã(z)e

λ̃

θ̃
h̃(z)

+(1−z)Ã′(z)e

λ̃

θ̃
h̃(z)

+(1−z)Ã(z)
λ̃

θ̃
h̃′(z)e

λ̃

θ̃
h̃(z)

)

Ã(z)−z
,  

 

thus giving an indefinite form  
0

0
  as value of Q̃′(1) and that we can solve once again by Hospital's rule: 

 

Noting Q̃′(z) as  
N(z)

D(z)
, we have: 

• N’(z) = −Q̃′(z)(Ã′(z) − 1) − Q̃(z)Ã′′(z) + (1 − ρ̃) (−2Ã′(z)e
λ̃

θ̃
h̃(z)

− 2Ã(z)
λ̃

θ̃
h̃′(z)e

λ̃

θ̃
h̃(z)

+ (1 −

𝑧)Ã′′(z)e
λ̃

θ̃
h̃(z)

+ 2(1 − 𝑧)Ã′(z)
λ̃

θ̃
h̃′(z)e

λ̃

θ̃
h̃(z)

+ (1 − 𝑧)Ã(z)
λ̃

θ̃
h̃′′(z)e

λ̃

θ̃
h̃(z)

+ (1 −

𝑧)Ã(z) (
λ̃

θ̃
h̃′(z))

2

e
λ̃

θ̃
h̃(z)

),  

At the point z = 1, the expression N'(z) takes the value: 

N’(1) = −Q̃′(1)(Ã′(1) − 1) − Q̃(1)Ã′′(1)⨁(1 − ρ̃) (−2Ã′(1) − 2Ã(1)
λ̃

θ̃
h̃′(1))  ; 

          Let, 

 N’(1) = −Q̃′(1)(ρ̃ − 1) − λ̃2. m̃2 + (1 − ρ̃) (−2ρ̃ − 2
λ̃

θ̃

ρ̃

1−ρ̃
) ; 

• D’(z) = Ã′(z) − 1  et  D’(1) = ρ̃ − 1. 

          In definitive, the true value of  Q̃′(z) at the point z = 1 is: 

 

 Q̃′(1) =
N’(1)

D’(1)
=

−Q̃′(1)(ρ̃−1)−λ̃2.m̃2+(1−ρ̃)(−2ρ̃−2
λ̃

θ̃
.
ρ̃

1−ρ̃
)

ρ̃−1
  

 

Let, 

Q̃′(1) = −Q̃′(1) −
λ̃2.m̃2

ρ̃−1
+ 2ρ̃ + 2

λ̃

θ̃
.

ρ̃

1−ρ̃
  

Or again: 

2Q̃′(1) =
λ̃2.m̃2

1−ρ̃
+ 2ρ̃ + 2

λ̃

θ̃
.

ρ̃

1−ρ̃
 . 

 

Hence: 
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dQ̃(z)

dz
(1) = Q̃′(1) =

λ̃2⨀m̃2

2(1−ρ̃)
⨁ρ̃⨁

λ̃⨀ρ̃

θ̃⨀(1−ρ̃)
  

or 
dQ̃(z)

dz
(1) = ρ̃⨁

λ̃2⨀m̃2

2(1−ρ̃)
⨁

λ̃⨀ρ̃

θ̃⨀(1−ρ̃)
                                   (37) 

 

These two results (36) and (37) show that the PollaczekKhintchine fuzzy formulas can well be obtained 

otherwise than by a simple extension of the classical formulas (1) and (2). 

4. CONCLUSION 

In this article, we have proposed a more interesting way of obtaining the Pollaczek-Khintchine fuzzy 

formulas to evaluate the characteristics of a of a non-Markovian fuzzy queuing system of the FM/FG/1-FR 

type. The formulae (36) and (37) obtained at the end of this step are nothing other than the fuzzy extension 

of the classical formulas of performance measures of M/G/1-R model. These results have therefore shown 

that it is possible to construct fuzzy formulas rather than simply extending them using Zadeh's extension 

principle. 

Wouldn't this approach provide a way of analysing the queuing system FM/FG/1-FR in a transient 

regime? Similarly, would this approach lead to the desired results if the recall law were general? Or what 

if the number of servers was doubled? All these questions will be the subject of our future research and 

may allow us to discover the limitations of this method.  
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