PRODUCTION AND CHARACTERIZATION OF ENVIRONMENTALLY FRIENDLY MORTAR USING TEXTILE WASTE

DIANA AFRINA BINTI RILA @ RELLA

BACHELOR OF SCIENCE (Hons.) CHEMISTRY WITH MANAGEMENT FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

FEBRUARY 2024

ACKNOWLEDGEMENTS

Upon completion of this project, I would like to express my gratitude to many parties. My heartfelt thanks goes to my supervisor, Ms. Sarah Laila Binti Mohd Jan for all the guidance, feedback, encouragement words and motivational support given throughout the process of completing this thesis. Based on her expertise and experience in chemistry field, Ms. Sarah Laila has given countless advice which have helped me a lot to overcome the difficulties I faced. I also want to sincerely thank all laboratory assistants; Sir Haji Nik Mohd Zamani Nik Ismail, Sir Abdul Muhaimin Bin Ab Aziz, Mrs. Norasidah Haron, Ms. Raja Nur Ernashahida Binti Raja Jaafar, Sir Mohd Faidzal Bin Mohamed and Sir Suhairi Suib for their kindness in helping and guiding me while conducting experiments and analysis. Last but not least, I am also grateful for all the prayers and emotional support given by my beloved family throughout the journey of completing this final year project. Thank you very much.

Diana Afrina Binti Rila @ Rella

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF PLATES	viii
LIST OF SYMBOLS	ix
LIST OF ABBREVIATIONS	Х
ABSTRACT	xi
ABSTRAK	xii

CHAPTER 1 INTRODUCTION

Background of study	1
Problem statement	4
Significance of study	5
Objectives of study	6
	Background of study Problem statement Significance of study Objectives of study

CHAPTER 2 LITERATURE REVIEW

Textile waste	7
Textile waste as building materials	9
Textile incorporated brick	12
Textile-reinforced mortar	14
	Textile waste as building materials Textile incorporated brick

CHAPTER 3 METHODOLOGY

3.1	Materials		17
3.2	Produ	ction of mortar samples	17
	3.2.1	Preparation of raw materials	17
	3.2.2	Preparation of cotton textile waste ash (CTWA)	18
	3.2.3	Mixture proportions of mortar samples	20
	3.2.4	Preparation of mortar samples	21
3.3	Chara	cterization of mortar samples	24
	3.3.1	Compressive strength	24
	3.3.2	Fourier Transform Infrared Spectroscopy (FTIR) analysis	26
	3.3.3	Scanning Electron Microscopy with Energy-Dispersive	26
		X-Ray (SEM-EDX) analysis	
3.4	Flowc	hart of research methodology	28

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Comp	Compressive strength	
4.2	Fourie	er Transform Infrared Spectroscopy (FTIR) analysis	35
	4.2.1	Ordinary Portland Cement (OPC)	35
	4.2.2	Cotton textile waste ash (CTWA)	37
	4.2.3	Control mortar sample (0% CTWA)	40
	4.2.4	Mortar sample containing 2% CTWA	42
4.3	Scann	ing Electron Microscopy (SEM) analysis	45
	4.3.1	Cotton textile waste ash (CTWA)	45
	4.3.2	Control mortar sample (0% CTWA)	47
	4.3.3	Mortar sample containing 2% CTWA	48
4.4	Energ	y-Dispersive X-Ray (EDX) analysis	51
	4.4.1	Ordinary Portland Cement (OPC)	51
	4.4.2	Cotton textile waste ash (CTWA)	53
	4.4.3	Control mortar sample (0% CTWA)	55
	4.4.4	Mortar sample containing 2% CTWA	57

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	60
5.2	Recommendations	61

CITED REFERENCES	63
APPENDICES	71
CURRICULUM VITAE	73

ABSTRACT

PRODUCTION AND CHARACTERIZATION OF ENVIRONMENTALLY FRIENDLY MORTAR USING TEXTILE WASTE

The use of cement in construction activities encourages cement production, which in turn contributes to carbon dioxide, CO₂ emission. CO₂ is the primary greenhouse gas in the atmosphere that is responsible for global warming. Apart from that, every year over 100 million tons of textile waste are being incinerated or dumped in landfills around the world. The fast fashion in the clothing industry leads to the mass production of clothes, which contributes to an increase in textile waste ending up in landfills. In this research project, environmentally friendly mortar samples were produced by incorporating cotton textile waste ash (CTWA) as partial replacement of Ordinary Portland Cement (OPC) at varying percentages of 0.1%, 0.5%, 1% and 2%. The mix ratio of 1:2.25 (cement to sand) and the water-to-binder (w/b) ratio of 0.40 were used for all cement mixes. After 28-days of curing, compressive strength test, Fourier Transform Infrared Spectroscopy (FTIR) analysis, and Scanning Electron Microscopy with Energy-Dispersive X-Ray (SEM-EDX) analysis were conducted in order to characterize the mechanical, physical and chemical properties of the mortar samples. Results revealed that the mortar sample with 2% CTWA showed high compressive strength value of 19.17 MPa which exceed the compressive strength value of the control sample containing 0% CTWA. Moreover, the compressive strength of 2% CTWA mortar samples also fulfill the ASTM C270 standard requirement value of 17.2 MPa. The improved compressive strength can be explained and supported by the FTIR and SEM-EDX results. The SEM images of 2% CTWA mortar sample showed increased formation of calcium silicate hydrates (C-S-H) gel. The increase in compressive strength at 2% CTWA mortar sample can also be associated with the high percentage by weight of silicon (Si) and calcium (Ca) elements in the EDX spectrum of CTWA. These promising results suggests that CTWA is suitable and has the potential to be used as material to partially replace OPC in cement mortar.