INVESTIGATION OF LIQUEFACTION RESIDUES FROM EMPTY FRUIT BUNCH (EFB) AND HIGH-DENSITY POLYETHYLENE (HDPE) AS A GASIFICATION A SOURCE FOR BIOFUEL PRODUCTION

NISHA SHAKILLA BINTI MOHD SUBRI

Final Year Project Submitted in Partial Fulfiment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2023

This Final Year Project Report entitled "Investigation of Liquefaction Residues of Empty Fruit Bunch (EFB) and High-Density Polyethylene (HDPE) for Gasification a Source for Biofuel Production" was submitted by Nisha Shakilla Binti Mohd Subri in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Sciences, and was approved by

Professor	Ts.	Dr.	Mohd	Azlan	Mohd	Ishak

Supervisor

Deputy Reactor of HEA,

Universiti Teknologi Mara (UiTM)

Perlis

Dr. Siti Nurlia Binti Ali Project Coordinator Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Nur Nasullah Binti Kasim Head of Programme Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date: ------

TABLE OF CONTENTS

			Page			
ACKN	OWLEDG	EMENTS	Ι			
TABL	E OF CON	TENTS	II			
LIST	OF TABLE	S	V			
LIST	OF FIGUR	ES	VI			
LIST	OF SYMB(DLS	VII			
LIST	OF ABBRE	CVIATIONS	VIII			
ABST	RACT		Х			
ABST	AK		XI			
СНАР	TER 1 INT	TRODUCTION				
1.1	Backgr	ound of the study	1			
1.2	Probler	Problem statement				
1.3	Signific	Significance of the study				
1.4	Objectives of the study					
СНАР	TER 2 LII	TERATURE REVIEW				
2.1	Biomas	SS	7			
	2.1.1	Empty Fruit Bunch (EFB)	10			
	2.1.2	Properties of EFB	12			
2.2	Plastic	Plastic waste				
	2.2.1	Plastic waste properties	17			
	2.2.2	Thermoplastic high-density polyethylene (HDPE) II	18			

	2.2.3 Properties of HDPE	19	
2.3	Biofuel production method		
	2.3.1 Liquefaction method	27	
	2.3.2 Gasification method	31	

CHAPTER 3 METHODOLOGY

3.1	Sample	Sample assay			35
	3.1.1	Materials			35
	3.1.2	Chemical	S		35
	3.1.3	Sample preparation Sample and product characterization			36
	3.1.4				37
		3.1.4.1	Functional group analysis		38
3.2	Liquefac	tion			39
3.3	Proximate analysis and fuel ratio determination			2	43

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Sample assay			
	4.1.1	Characterization of raw EFB	44	
	4.1.2	Characterization of raw HDPE	45	
4.2	Product	Characterisation of residue (bio-char) form liquefaction of EFB	47	
	and HD	PE by using Fourier Transform Infrared (FTIR)		
	4.2.1	Effect of ratio on functional group	47	
4.3	Proximat	e Analysis of EFB and HDPE	50	
	4.3.1	Properties	50	
	4.3.2	Effect of Difference Ratio of EFB and HDPE	50	

ABSTRACT

INVESTIGATION OF LIQUEFACTION RESIDUES FROM EMPTY FRUIT BUNCH (EFB) AND HIGH-DENSITY POLYETHYLENE (HDPE) AS A GASIFICATION A SOURCE FOR BIOFUEL PRODUCTION

Every year, the oil palm industry in Malaysia produces a tonne of biomass residue that is largely wasted and left to decompose. The excessive usage of fossil fuels has come under scrutiny as a result of the development of alternative fuels that are both clean and renewable. Biomass has emerged as a leading contender among renewable energy sources over the course of the past three decades. EFB can be recycled into biofuel, which is beneficial to the environment and cuts down on the amount of trash produced. In order to produce biofuel, pyrolysis is frequently utilised in the processing of energy from waste biomass (EFB) as well as high-density polyethylene (HDPE). For these reasons, thermogravimetric analysis (TGA) is seen to be a promising alternative method for proximate analysis. From this study also know that, the different ratio of EFB and HDPE have significantly influenced by the number of functional groups of the produced chars by using Fourier Transform Infrared analyser (FTIR). The fuel ratio was calculated, the level of the suitability of the residue was determined whether it can continue to be used in the gasification process. In this study, it has been shown that the residue consisting of 75% EFB and 50% EFB can be used for the gasification process. The ideal fuel ratio for the gasification process is between 0.1 and 1.0.