ADSORPTION OF METHYLENE BLUE BY ULTRASONIC ASSISTED-PHOSPHORIC ACID ACTIVATED CARBON FROM ARECA CATECHU HUSK

NURUL IFFAH BINTI MOHD SAID

Final Year Project Proposal Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2023

This Final Year Project entitled "Adsorption of Methylene Blue by Ultrasonic Assisted-Phosphoric Acid Activated Carbon from Areca Catechu Husk" wassubmitted by Nurul Iffah Binti Mohd Said in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Science, in the Faculty of Applied Sciences, and was approved by

Mohd Fauzi Bin Abdullah Supervisor B. Sc. (Hons.) Applied Science Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr Siti Nurlia binti Ali Project Coordinator B. Sc. (Hons) Applied Chemistry Faculty of Applied Science Universiti Teknologi MARA 02600 Arau Perlis Dr. Nur Nasulhah binti Kasim Head of Programme B. Sc. (Hons.) Applied Chemistry Faculty of Applied Science Universiti Teknologi MARA 02600 Arau Perlis

Date: 7/8/2023

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	i
TABLE OF CONTENTS	ii
LIST OF TABLES	V
LIST OF FIGURES	vi
LIST OF SYMBOLS	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	X
CHAPTER 1	1
1.1 Background of Study	1
1.2 Problem Statement	4
1.3 Significance of Study	5
1.4 Objectives of Study	7
1.5 Scope and Limitation of Study	8
CHAPTER 2	9
2.1 Wastewater Treatment	9
2.2 Areca Catechu (Betel Nut)	12
2.3 Methylene Blue	13
2.4 Activated Carbon	14
2.5 Activated Carbon as Adsorbent	15
2.6 Activation Process	16
2.6.1 Physical Activation Method	
2.6.2 Chemical Activation Method	
2.7 Ultrasonic-assisted Chemical Activation	
2.8 Characterization of Activated Carbon	
2.9 Adsorption Method	

2.10	Optin	nization of Adsorption Batch	18
CHA	APTEI	R 3	19
3.0	Desci	ription of Methods	19
3.1	Appa	ratus	19
		nicals	
3.3	Prepa	ration of Activated Carbon	20
		ration of Methylene Blue	
		acterization	
		FTIR analysis	
	3.5.2		
	3.5.3		
	3.5.4	·	
	3.5.5	·	
3.6	Adso	rption Batch	
	3.6.1	Effect of Adsorbent Dosage	
	3.6.2		
	3.6.3		
3.7		odology Flowchart	
СН	IAPTI	ER 4	30
4.1		aracterization	
	4.1.1	FTIR Analysis	
	4.1.2	pH _{pzc} Analysis	
	4.1.3	Bulk Density	34
	4.1.4	Ash Content	34
	4.1.5	Iodine Test	35
4.2	2 Ac	lsorption Batch	36
	4.2.1		
	4.2.2	Effect of Contact Time	
	4.2.3	Effect of Concentration of Methylene Blue	39

ABSTRACT

ADSORPTION OF METHYLENE BLUE BY ULTRASONIC ASSISTED-PHOSPHORIC ACID ACTIVATED CARBON FROM ARECA CATECHU HUSK

The production of activated carbon from agricultural waste is one of the most environmentally friendly solutions by converting agricultural waste into valuable material. In this study, a waste biomass of Areca catechu husk will be used as a precursor for preparation of activated carbon by ultrasonic assisted chemical activation using phosphoric acid, H₃PO₄ as activating agent. Areca Catechu husks are converted into activated carbon to remove methylene blue in aqueous solution. This Areca Catechu husk will undergo carbonization process by dried at temperatures 700°C for 2 hours and cooled before washed using phosphoric acid to activate a pore surface. Activated carbons are tested for porosity and adsorption. Different adsorption experiments, such as adsorbent dosage, contact of time, and initial concentrations of methylene blue that influenced the adsorption capacity of the activated carbon. The optimum adsorbent dosage of activated carbon of Areca Catechu husk was 0.06g. which gives 92.6% of methylene blue dye color removal at 100mg/L within 60 minutes. The optimum time of activated carbon of Areca Catechu husk was 180 minutes which gives 88.6% of methylene blue color removal at 100mg/L. This activated carbon Areca Catechu husk is suitable to remove all types of cation dyes. The result from proximate analysis shows that the activated carbon of Areca Catechu husk has low bulk analysis, low ash content and higher iodine number that very suitable for adsorption applications. Finally, activated carbon of Areca Catechu husk can be produced inexpensively as the demand from commercial activated carbon market.