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Abstract 

 

The structural integrity is susceptible to a combination of statistical and engineering design uncertainties that 

may remain flexible as long as the structure can successfully manage the encountered load. There are many 

methods for determining the probability of failure (POF) in the oil and gas sector, but they all have particular 

constraints. Therefore, this study is a quantitative risk assessment to establish a more reliable method for 

calculating the POF value. This study chose and evaluated a sample of a braced monopod and 4 legged offshore 

structures for global non-linear analysis. The most reliable form of distribution was predetermined, and the 

appropriate integral equation was applied and computed based on the load and strength model conditions. The 

result of the testing of stress-strength interference for 12 directions and for 8 directions of wave impact in POF 

indicated that the platform remained intact and reliable compared to the L2 exposure level for the reliability 

target of POF recommended by ISO 19902, ISO 19901, and PETRONAS. Furthermore, this established that the 

applied integral equation provided a high degree of confidence in calculating the new POF. This newly created 

approach will enable the structural engineer to outline action items as part of the organisation’s risk management 

process. 

 
Keywords: Probability of failure; Structural integrity; Nonlinear; Stress-strength interference method 

 

1. Introduction 

 

The oil and gas industry players are always looking for the opportunity to optimise brownfield’s economics, 

making juggling between cost, safe operation, and demand to increase production from existing facilities more 

challenging (Animah et al., 2018; Palkar & Markeset, 2011; Wehunt et al., 2003). Therefore, there is a need to 

continuously ascertain the ongoing reliability of these ageing platforms. The reliability of a system is an 

analytical problem that involves both statistical and engineering aspects (Gnedenko et al., 1999; Negra et al., 

2007; Trivedi & Bobbio, 2017). Critical attention must be given throughout the life of a system, including its 

development, design, production, quality control, shipping, installation, operation, and maintenance (Mat Soom 

et al., 2015; Rao, 1992). Reliability engineering has become a common practice in the Malaysian oil and gas 

industry to assess structural integrity and requalification for the life extension of an offshore platform 

(Chandrasekaran, 2017; Faber & Stewart, 2003).  

 

https://joscetech.uitm.edu.my/


Journal of Sustainable Civil Engineering and Technology 

e-ISSN: 2948-4294 | Volume 3 Issue 1 (March 2024), 39-54 

https://joscetech.uitm.edu.my 

 

40 

In general, an existing structure’s appropriate safety may be assured by demanding adherence to the most recent 

rules and regulations (Shittu et al., 2020). However, it is not clear how to comply with ageing structures in terms 

of extended life. Specifically, detailing further fatigue for structures surpassing its initial fatigue design life 

(Veritas & Lloyd, 2010), while no cracks have been discovered as an example, which is not achievable utilising 

the design standards (Ribeiro et al., 2020; Tofik, 2019). As a result, it is essential to devise a plan that requires 

minimum effort to ensure that a structure’s continuous safety is assured well beyond its original design life. 

Today’s offshore structures are reasonably safe once the structural reliability analysis is implemented to assess 

the probability of failure (POF) of aged platforms (Mirzadeh et al., 2015; Paulo Mendes et al., 2021; Zakikhani 

et al., 2020). 

 

According to Mat Soom et al. (2015, 2016), the most commonly used procedures to evaluate the integrity level 

of offshore platforms are Global Ultimate Strength Assessment (GUSA) and Risk-Based Design and 

Assessment (RBDA). PETRONAS developed GUSA in 2014 to evaluate and assess more than 100 platforms 

under PETRONAS Carigali Sdn Bhd (PCSB) in the region of Malaysian offshores, while Shell developed an 

RBDA in 1997 (Ayob et al., 2014; Azman et al., 2017; Efthymiou & Van de Graaf, 2011; Mat Soom, 2018). 

Several oil and gas companies apply non-linear analysis using modern software to obtain the reserve strength 

ratio (Mat Soom, 2018). The reserve strength ratio is based on the ultimate base shear over the design of the 

return period. In practice, the reserve strength ratio is verified by a static pushover analysis or a non-linear 

collapse analysis (Stewart & Manzocchi, 2018). In some cases, reliability software is also used to calculate the 

reliability analysis of fixed-structure-platforms (Bjerager, 1990; Elsayed et al., 2016; Stewart & Manzocchi, 

2018). 

 

Kurian et al. (2014) determined the structural reliability of jacket platforms by assessing the system probability 

of failure (failure path) and its corresponding reliability index using the first-order reliability method (FORM) 

and simple bound formula. A year later, three (3) platforms, Kurian et al. (2015) indicated that the reliability 

index for component reliability was inversely correlated to the probability of failure. Component reliability was 

not affected by the variation in the met-ocean parameters. The study concluded that system-level reliability 

analysis (SLRA) is complicated and time-consuming based on the comparison between high-reliability indices 

(HRI) (Coccon et al., 2017; Mat Soom et al., 2020; Shittu et al., 2021). 

 

According to Verma et al., (2016) and Mat Soom et al., (2020), the concept of conditional probability and 

multifaction rules of probabilities are the most important of all the probability theories. It is often interesting to 

calculate probabilities when some partial information concerning the result of the experiment is available or 

recalculate them in light of additional information. The probability of the intersection of two events is often 

needed: Let there be two events, namely A and B; the probability of A given that B has occurred is conditional 

probability. 

 

The interference load and strength formulations were shown and explained in conjunction with the conditional 

probability notion (Low, 2017; Starokon, 2019). As an outcome, a case study of a braced monopod and 4 legged 

platforms was assessed. The results were compared to ISO 19901, ISO 19902, and PETRONAS recommended 

standards for the POF exposure level category (Chang et al., 2005; ISO 19901-2, 2004; ISO 19902, 2007; Khan 

et al., 2020). 

 

1.1. Principles of Structural Reliability Analysis 

 

Structural reliability analysis (SRA) is a superior approach to reliability assessment (RA) due to its extensive 

application (Bea, 1992; Cremona, 2012; Hørte & Sigurdsson, 2017). In reliability engineering, a simplified 

analytical procedure to evaluate the probability of failure (POF) for fixed offshore platforms subjected to 

extreme storm conditions was established to assess the structural safety and perform reliability analysis (Bea & 

Mortazavi, 1992; Kajuputra et al., 2016; Onoufriou & Forbes, 2001). The method is similar to the demand-

supply or load-strength principles. Therefore, it is beneficial for general demand and supply (Bea, 1992; Mat 
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Soom et al., 2019; Onoufriou & Forbes, 2001). Demand is the load model, while supply is referred to as the 

resistance model or strength model. The structural reliability analysis is used to estimate the integrity of an 

existing structure based on the pushover analysis (Fayazi & Aghakouchak, 2015). The component failure occurs 

due to several hidden potentials, such as the redundancy integrity of the structure and load distribution. 

 

The simultaneous probabilistic method of all three load-generating sources, such as wind, waves, and currents, 

is required to design load-carrying members of the offshore structures. The reason is that the designed platforms 

have to withstand the effects of environmental forces, as discussed in Haritos (2007), Wang and Xia (2012), 

Mohd Zaki et al. (2016), Mukhlas et al. (2016), Abu Husain et al. (2017); Syed Ahmad et al., (2019). Moreover, 

the structural reliability approach should also be considered for the other uncertainties inherent in loads and 

resistances (Chakrabarti, 2005; Chakrabarti, 1987). 

 

Probability is known as a degree of belief regarding the occurrence of an event rather than the actual frequency 

(Ang & Tang, 1984; Ayyub & McCuen, 2016; Ebrahimian et al., 2014). In contrast, reliability is defined as the 

complement of the probability of failure. It is precisely known as the probability of safety of the structure over 

a given period (Melchers & Beck, 2018). The procedure to calculate the structural probability of failure against 

seismic loading was introduced (Benjamin & Cornell, 1970; Papoulis & Pillai, 2002). In addition, the 

probability of failure for structural capacity can also be calculated by considering its uncertainty as determined 

from the non-linear static pushover analysis that was established for probabilistic assessment of platforms under 

extreme wave loading (Jalayer, 2003; Krawinkler et al., 2006; Krawinkler & Deierlein, 2014; Manuel et al., 

1998; Moehle & Deierlein, 2004). 

 

1.2. Integral and Interference Theory 

 

In general, probability is a tool to quantify the uncertainty of events and reason in a principled manner (Barltrop 

& Adams, 2013; Brebbia & Walker, 2013; Leimeister & Kolios, 2018). It is essential to know that this integral 

equation is applicable only if the load and strength models are statically independent for a continuous variable 

(Mat Soom et al., 2023; Sundararajan, 2012; Zentuti et al., 2018). The process of finding an integral is called 

integration. In basic reliability engineering, the meaning of reliability is the performance at or above a given 

standard (rated from 0 to 1, where 0 is the least reliable) (Abu Husain et al., 2013; Alati et al., 2013; Mat Soom, 

2018; Mohd Zaki et al., 2016; Mourão et al., 2020; Rathod et al., 2011). On the other hand, the probability of 

failure is the performance below a given standard (rated from 0 to 1, where 1 is an absolute failure). Since these 

events (success and failure) are complements, the following is true where reliability is equivalent to 1 – the 

probability of failure (POF). Failures occur where loads and strength models overlap each other 

(Chandrasekaran & Nagavinothini, 2020; Rao, 1992; Salgado & Kim, 2014; Shen et al., 2019). 

 

The probability of failure (POF) can be expressed as shown in Equation (1) to Equation (3); 

 

 
 

where 𝑓𝑆(𝑠) and 𝑓𝐿(𝑙)  are the probability density function (PDF) of the strength and load, respectively. While 

𝐹𝐿 (𝑠) is the probability distribution function (PDF*) of L in a unit of strength.  
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An alternate for the probability of failure (POF) can also be expressed as presented in Equation (4) to Equation 

(6); 

 

 
 

where 𝐹𝑆 (𝑙) is the probability distribution function (PDF*) of S in the unit of load. 

 

Following the present knowledge of the non-linear analysis, the RSR values considered in estimating the 

potential collapse of offshore fixed structures ranged between 0.80 and 1.39 (Mat Soom et al., 2019, 2020). In 

this study, the selected offshore structure was analysed using a reliable approach, namely the stress-strength 

interference method. This new method was described in the subsequent section. 

 

2. Research Methodology 

 

2.1 Factor of Safety 

 

The parameter used to maintain a certain degree of safety in structural and mechanical design is called a factor 

of safety (Khan et al., 2020; Stacey & Sharp, 2007). The safety factor definition varies from user to user, 

depending on the sophistication and complexity of the problem (Low, 2017). The variables could be force, 

power, torque, material, surface finish, fillet radius, etc. (Rao et al., 2012; Rao & Annamdas, 2013; Vonta & 

Ram, 2018).  

 

In this study, the factor of safety was the ratio of the expected strength to the expected load (Verma et al., 2016). 

Therefore, each load (time) step for incremental or iterative methods was correlated with the factor of safety. 

The factor of safety of the selected test structure element was determined based on Equation (7) for braced 

monopod platforms respectively: 

 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑅𝑎𝑡𝑖𝑜 (𝑅𝑆𝑅) =  
𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝐵𝑎𝑠𝑒 𝑆ℎ𝑒𝑎𝑟

𝐵𝑎𝑠𝑒 𝑆ℎ𝑒𝑎𝑟
              (7) 

  

2.2 Stress-Strength Interference Probability of Failure Determination Procedure 

 

In this study, the load (time) step process was based on the ultimate limit state condition either by the 

incremental or iterative method (Azman et al., 2017; Mat Soom et al., 2019). The test structure element’s load 

experience exceeded the strength capacity at a specific return period (RP). In other words, any load experienced 

by the structure element until its ultimate limit state condition or failure (Mat Soom, 2018). Figure 1 is a 

flowchart procedure explaining the process flow, showing the detailed steps developed to determine the test 

structure’s POF. Further explanations of this procedure are provided in Mat Soom et al. (2020, 2023) and Yak 

et al. (2021) 

 

The reserve strength ratio (RSR) and base shear (BS) are calculated from the ultimate limit state (pushover 

analysis) (Azman et al., 2017; Dyanati & Huang, 2014; Karimi et al., 2017; Mat Soom, 2018). The safety factor 

was used in accordance with Equation (7) to get the value of the other variable (Nizamani, 2015; Srikanth, 

2016). It enables the determination of distribution types that are neither PDF nor PDF*. Both distributions had 

probability models with four (4) tails of bell-shaped curves. The strength model was produced by multiplying 
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BS with RSR as studied by Mat Soom (2018) and Mat Soom et al., (2023), which served as the ultimate strength 

model, while BS served as the load model.  

 

Equation (3) and Equation (6) were used to estimate the values of collapse based on the RSR range of 0.8 to 

1.39. This range was the total up to which POF was calculated. A region of overlap between the two probability 

distributions indicated the condition status when the BS was higher than the strength (Kolios & Brennan, 2009; 

Mat Soom et al., 2019). It can be translated as the determination of RSR < 3.5 where the load exceeds strength, 

and vice versa for RSR ≥ 3.5. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Methodology of a Stress-Strength Interference  

Probability of Failure Determination Procedure 

 

 

 

Data (metocean data & model of 

offshore structure)  

Analyse non-linear pushover analysis or ultimate analysis for each element. Identify factors of safety that 

contribute to ultimate analysis. 

Extract each load (time) step for incremental/iterative methods for each value related to factor of safety. 

Identify the type of distribution and condition of distribution neither PDF nor PDF*  
 Determine the Reserve Strength Ratio (RSR) values for each wave direction. 

 

Integral equation: if > load 
RSR<3.5 

  

Multiplied between PDF and PDF* according to selected integral equation. 

 

Integral equation: if > strength  
RSR ≥ 3.5 

 

  

Probability of failure 

Decision making for stable inspection by identifying the values of collapse between 

range of 0.8 – 1.39. Total up multiplication result in order to calculate POF 
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3. Data Evaluation and Test Structure Element Analysis 

 

3.1 Structures Element Specification 

 

In general, the purpose of this study was to demonstrate structural reliability assessment by developing a rational 

and reliable engineering method (stress-strength interference method) based on an understanding of the 

uncertainties associated with the selected existing test structure elements, particularly those that contribute to 

the probability of failure (POF). 

 

A braced monopod and 4 legged fixed structure platform were selected as the test structure elements. Both were 

installed offshore at 54 metres of water depth. A brace monopod has one (1) piled (pile-driven through jacket 

leg), and two skirt piles support the structure, while 4 legged has four (4) piled (pile-driven through jacket leg). 

The design was intended to last twenty years, which was twice the initially expected production life. The 

metocean data was based on deep water hydrodynamics and was generated using existing SEAFINE data. 

Twelve (12) directions were analysed, representing 4, 34, 64, 94, 124, 154, 184, 214, 244, 274, 304, and 334 

degrees for a braced monopod, while for 4 legged total eight (8) directions were analysed, representing 0, 45, 

90, 135, 180, 225. 270 and 315 degrees.  

 

3.2 Global Analysis for Structural Element of Fixed Structure Platform 

 

The long-term load distribution is an expression that allows us to predict the load level over a usually 100-year 

return period (RP) (Abu Husain et al., 2013; Mohd Zaki et al., 2017). The data for this study was obtained from 

the met-ocean data analysis performed on the fixed structure platform. To conduct this high-end study, twelve 

(12) and eight (8) wave load directions corresponding to degrees were selected.  

 

The full results of the non-linear pushover study were summarised in Table 1 for a braced monopod platform 

and Table 2 for 4-legged platform. The reserve strength ratio (RSR) for all directions remained more than the 

unmanned platform RSR limit of 1.32 as determined by industry and API RP 2SIM. Before calculating the 

POF, the condition for each direction must be established by generating and plotting the four (4) tail bell curve 

distributions. The result of the four (4) tail bell curve distributions can be analysed to evaluate if the BS bell 

curve distribution is greater than the strength bell curve distribution or not, based on RSR values less than 3.5 

or equivalent and more than 3.5, leading the correct equation to be selected. Following that, using Equation (3) 

and Equation (6), POF was calculated after identifying the load and strength conditions.  

 

Based on the result presented in Table 1, the direction with the worst significant impact is 124 degrees, as 

indicated by a low RSR value of 1.496 and the condition is a more significant load impact with a POF of 2.66E-

05. Similarly, Table 2 reveals that the direction with the worst significant impact is 270 degrees, which is 

analysed by an RSR of 2.260 and a POF of 3.99E-07, indicating a greater susceptibility to load impacts. 
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Table 1. Overall results of 12 directions of wave impact for a braced monopod platform 

 

Table 2. Overall results of 8 directions of wave impact for 4-legged platform 

Directions RSR 
Condition: 

> load or > strength 

POF Calculated based on 

Equations (3) and (6) 

0 2.526 > Load 4.55E-07 

45 2.832 > Load 2.21E-07 

90 6.370 > Strength 1.24E-15 

135 9.160 > Strength 2.83E-15 

180 6.375 > Strength 2.07E-14 

225 2.592 > Load 3.62E-08 

270 2.260 > Load 3.90E-07 

315 2.996 > Load 1.23E-07 

 

3.3 Assessment for the Purpose of Calculating Probability of Failure 

 

Two (2) samples were analyzed to determine the main effects of failure at 124 and 270 degrees of wave/load 

direction. For each sample, the highest load model was identified, and probability distribution models were used 

to determine the area of the failure region. 

 

At 124 degrees of wave/load direction, one (1) sample showed that the highest base shear and lower RSR of 

1.496 were determined as the main effects of failure. The probability distribution modelling for the load model 

(3-parameter log-logistic – PDF) and the strength model (3-parameter log-logistic – PDF*) was plotted, 

resulting in the load model overlapping with the strength model when PDF is more significant than PDF*. The 

development of (4) tail bell curve distribution is illustrated in Figure 2.  

 

Following that, the integral of Equation (3) was used to multiply both PDF and PDF*. The overlap zone on the 

distributions indicated the area of the failure region, where the probability of failure (POF) was most likely to 

occur. The total of the integral area was calculated as 2.66 × 10-5 due to POF. 

 

 

Directions RSR 
Condition: 

> load or > strength 

POF Calculated based on 

Equations (3) and (6) 

4 4.664 > Strength 2.33E-16 

34 6.149 > Strength 1.12E-15 

64 2.141 > Load 1.38E-06 

94 1.542 > Load 1.91E-05 

124 1.496 > Load 2.66E-05 

154 1.649 > Load 6.22E-06 

184 2.047 > Load 1.11E-06 

214 2.664 > Load 6.84E-10 

244 2.262 > Load 5.62E-07 

274 4.379 > Strength 7.55E-17 

304 4.261 > Strength 6.24E-16 

334 5.626 > Strength 3.90E-17 
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Figure 2. Sample of 124° direction of 4 tail bell curve distributions using  

equation (2) for a braced monopod platform 

 

3.4 Comparison between ISOs and PETRONAS in accordance with Industry Requirements 

 

Similarly, at 270 degrees of wave/load direction, one sample showed that the highest base shear and lower RSR 

of 2.260 were determined as the main effects of failure. The probability distribution modelling for the load 

model (3-parameter log-logistic – PDF) and the strength model (3-parameter log-logistic – PDF*) was plotted, 

resulting in the load model overlapping with the strength model when PDF is more significant than PDF*. The 

development of (4) tail bell curve distribution is illustrated in Figure 3.  

 

Following that, the integral of Equation (3) was used to multiply both PDF and PDF*. The overlap zone on the 

distributions indicated the area of the failure region, where the probability of failure (POF) was most likely to 

occur. The total of the integral area was calculated as 3.99 × 10-7 due to POF. 

 

 PDF 

PDF* POF 
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Figure 3. Sample of 270° direction of 4 tail bell curve distributions  

using equation (2) for 4 legged platform 

 

3.4 Comparison between ISOs and PETRONAS in accordance with Industry Requirements 

 

For existing platforms, API provides a common risk classification for the output of their exposure category and 

their POF classification (API, 1977, 1985). The exposure classification of an ageing platform is defined as 

relating to life safety exposure classes and failure consequence classes, taking into consideration potential 

environmental and economic consequences (API, 1993a, 1993b). The exposure classification matrix can be 

referred to in detail in ISO (2007). The life safety or consequence of failure should be established using the 

more restricted method. The offshore structure is categorised as the structure's exposure level (L1 - high, L2 - 

medium, L3 - low). Exposure levels are determined based on the life safety category and consequence category. 

For example, at the outset of the design process, offshore platforms should be classified as S1 - manned non-

evacuated, S2 - manned evacuated, and S3 - unmanned, in addition to C1 – high consequence, C2 - a medium 

consequence, and C3 - low consequence. 

 

Test samples of two (2) platforms, i.e., a braced monopod and 4-legged platforms, tested at 124 degrees and 

270 degrees, respectively. Both platforms fall into the consequence category C2, whereas the life-safety 

category is S2. As a result, this platform fell short of the L2 reliability target. In Table 3, it can be seen that POF 

for braced monopod is 2.66 × 10-5 while POF for 4-legged platforms is 3.99 × 10-7. According to ISO 19902, 

Table 3, the maximum exposure level L2 is 5.00 × 10-4 probability of failure, and the exposure level L2 exceeded 

the acceptable limit of 2000 years return period from a design perspective. ISO 19901 indicated in the same 

table that the probability of failure for L2 is 4.00 × 10-4 (medium) under the inspection interval. According to 

PETRONAS, the authority recommended in this table, the probability of failure under unmanned design is 1.00 

× 10-3.  

 

 

 

 

 

 

 

 

 

PD

PD

PO
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Table 3. Probability of failure comparison measure (POF) 

 

Risk 

Ranking 

Probability of 

Failure (POF) 

ISO 19902:2007 

Amendment - 19902:2013 

Design Target POF 

ISO 19901-9:2019 

Inspection Interval 

POF 

PETRONAS 

Recommendation 

(Ayob et al, 2014) 

 

Very  

High 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Very 

low 

1.00  

L1/L2: 

Critical 

Condition 

 L1: 1-

3 

years 

L2: 3-

5 

years 

 

For Risk 

Mitigation  

1.00 × 10-2 

1.00 × 10-3 
Unmanned 

Design 

5.00 × 10-4 
L2 @ 1/2000  

4.00 × 10-4 

 

L1/L2: 

Good 

Condition 

Medium 

L1/L2: 

3-5 

years 

 

1.00 × 10-4 Low 

L1: 3-

5 

years 

L2: 6-

10 

years 

Manned 

Design 

and 

Inspection 

For 

Monitoring 

3.00 × 10-5 
L1 @ 

1/33000 

L1/L2: 

Best 

Condition 

  

Braced 

Monopod 

2.66 × 10-5 

   

1.81 × 10-6    

4-Legged 

3.99 × 10-7 

   

0.00    

 

Following the development of the method, conclusions regarding the result of POF obtained using the stress-

strength interference method may be derived by comparing it to the result calculated using Equation (3) and 

Equation (6) in comparison to ISO 19902  in terms of target reliability of design perspective, ISO 19901-9 in 

terms of inspection interval frequency and PETRONAS in terms of risk to consider as an authority (refer Figure 

4 and Figure 5). 

 

The results of the POF calculation (overlap) for 12 directions and 8 directions of wave impact between 

probability density function (PDF) and probability distribution function (PDF*) were obtained using the 

Equation (3) and Equation (6) approaches. As shown in Figure 4 and Figure 5, the result is based on the sum of 

load and strength distributions using the applied integral equation. The results of the study were compared 

against three different sets of standards: ISO 19902, ISO 19901, and PETRONAS recommendations, which are 

the regulatory authorities for Malaysia. ISO standards are one of the main references used by key players in the 

Malaysian oil and gas industry.  

 

The study plotted the outer layer was the PETRONAS requirement, followed by ISO 19902 and ISO 19901. 

The estimated Probability of Failure (POF) values remained within the allowed range specified in the 

aforementioned standards (refer to Figure 4 and Figure 5), indicating that the braced monopod and 4-legged 

platforms were still in good condition. Specifically, the design outcome of ISO 19902 was L2, the best condition 

from a design perspective, while the inspection interval specified by ISO 19901 was between 6 and 10 years. 

PETRONAS, on the other hand, required monitoring for risk mitigation, which both platforms satisfied. Thus, 

these results indicate that both platform conditions were still intact with a low risk for the probability of failure, 

and it was deemed fit for service according to the standards. 
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Figure 4. All twelve (12) directions POF result 

 

 
Figure 5. All eight (8) directions POF result 
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3. Conclusion 

 

Safety is measured based on statistical judgement, while structural reliability is based on engineering 

methodology. The concepts of demand and supply or load and strength were applied in this simplified, reliable 

analytical procedure to determine the probability of failure of the test structures subjected to extreme storm 

conditions.  

 

The probabilistic model used is a combination of the load model and strength model. All results from the applied 

global static under stress-strength interference theory analyses are acceptable and comply with the standard 

compliance of value delivery and classification of benefits to the platform operator. It is beneficial economically 

in terms of resource optimisation and the platform’s reassessment.  

 

This recent analysis is important to oil and gas industry standards as it involves quality, safety, and cost, 

especially when the platform’s collapse potentially involves the loss of life, and damage to the assets and the 

environment. Overall, these findings underscore the critical role of direction in determining the integrity of 

offshore structures and highlight the importance of incorporating comprehensive reliability analyses in 

designing and maintaining such structures. 
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