OXALIC ACID FROM Averrhoa bilimbi AS AN ALTERNATIVE BLEACHING STAIN REMOVER

AMIRA DAYANA BINTI HAZMI

Final Year Project Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2023

This Final Year Project Report entitled "**Oxalic Acid from** *Averrhoa bilimbi* as an **Alternative Bleaching Stain Remover**" was submitted by Amira Dayana binti Hazmi in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Sciences, and was approved by

Dr. Nurul Zawani binti Alias Supervisor B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr. Siti Nurlia binti Ali Project Coordinator B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Nur Nasulhah binti Kasim Head of Programme B. Sc. (Hons.) Applied Chemistry Faculty of Applied Chemistry Universiti Teknologi MARA 02600 Arau Perlis

Date: 4th August 2023

ABSTRACT

OXALIC ACID FROM Averrhoa bilimbi AS AN ALTERNATIVE BLEACHING STAIN REMOVER

Nowadays, we cannot stop getting stains on our fabric due to our daily activities such as cooking, eating, teaching, and working. The common stain we get are lead pencils, eye makeup, tomato sauce, mud, and tea. Therefore, many commercialized products, such as Clorox, remove this stain. Clorox is a well-known stain remover in our country. Sodium hypochlorite is the primary solution in this bleaching. However, this solution is toxic and will produce chlorine gas that causes many harmful effects on our health and environment. Therefore, oxalic acid was used as an alternative to removing the stain, as it is known as a bleaching and chelating agent. In this study, the concentration of oxalic acid in Averrhoa bilimbi fruits and leaves was determined using highperformance liquid chromatography-ultraviolet (HPLC-UV). This study also aims to formulate A. bilimbi fruits and leaves extract as bleaching stain remover with the addition of sodium hypochlorite and to evaluate the extract's effectiveness with the commercialized stain remover through a visibility test. The fruits contain a higher concentration of oxalic acid than leaves with a concentration of 294.20±47.35 ppm for fruits and 239.81±60.50 ppm for leaves. The results showed that the preferred formulation is F3 and L3, which contain a 1:1 fruit or leaf extract ratio and sodium hypochlorite. Hence, 50% of fruit or leaf extract manages to remove many types of stains, such as lead pencils, tomato sauce, eye makeup, and tea, in 10 minutes. pH test also showed that the pH of this formulation is lower than a commercialized stain remover which is 10.90 for F3 and 10.91 for L3, while the pH for commercialized stain remover is 11.86. Hence, it is proven that both fruits and leaves extract of A. *bilimbi* can be used as an alternative stain remover.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABSTRAK	v
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SYMBOLS	Х
LIST OF ABBREVIATIONS	xi

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	4
1.3	Significance of study	6
1.4	Objectives of study	7

CHAPTER 2 LITERATURE REVIEW

2.1	Averrhoa bilimbi	8
	2.1.1 Averrhoa bilimbi leaves	9
	2.1.2 Averrhoa bilimbi fruits	11
2.2	Chemical constituent in Averrhoa bilimbi	12
2.3	Oxalic acid	14
2.4	Application of oxalic acid	15
	2.4.1 Chemical industry	15
	2.4.2 Food industry	17
	2.4.3 Plantation industry	17
2.5	Stain remover	18
	2.5.1 Role of stain remover in the textile industry	18
	2.5.2 Types of stain and stain remover	19
2.6	Sodium hypochlorite as stain remover	20
2.7	The effects of sodium hypochlorite	22

2.7.1 Effects on the environment	22
2.7.2 Effects on human health	23

CHAPTER 3 METHODOLOGY

3.1	Materials and chemicals	24
	3.1.1 Raw materials	24
	3.1.2 Chemicals	24
3.2	Preparation of fruits and leaf extract	25
3.3	Preparation of standard calibration curve	25
3.4	High Liquid Performance Chromatography-Ultraviolet (HPLC-UV) a 26	nalysis
3.5	Formulation of bleaching stain remover	26
3.6	Stain remover analysis	27
	3.6.1 pH test	27
	3.6.2 Staining	27
	3.6.3 Stain visibility	28
3.7	Statistical analysis	29

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Extraction yield of Averrhoa bilimbi fruits and leaves extract	30
4.2	HPLC analysis	31
4.3	Stain remover analysis	35
	4.3.1 pH test	35
	4.3.2 Stain visibility	37

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	42
5.2	Recommendation	43

CITED REFERENCES APPENDICES