THE EFFECT OF PLASTICIZER CONECENTRATION ON THE PROPERTIES OF BIOPLASTIC BASED ON CELLULOSE ACETATE FROM PINEAPPLE LEAVES

NURUL SHAZANA BINTI MOOHAMAKORREEYA JEHYOR

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

-AUGUST 2023-

This Final Year Project Report entitled "The Effect Of Plasticizer On The Properties Of Bioplastic Based On Cellulose Acetate From Pineapple Leaves" was submitted by Nurul Shazana Binti Moohamakorreeya Jehyor in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Sciences, and was approved by

> Dr Faiezah Binti Hashim Supervisor B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr Siti Norlia Binti Ali Project Coordinator B. Sc. (Hons.) Applied Chemistry Faculty of Applied Science Universiti Teknologi MARA 02600 Arau Perlis Dr Faiezah Binti Hashim Project of Programme B. Sc. (Hons.) Applied Chemistry Faculty of Applied Science Universiti Teknologi MARA 02600 Arau Perlis

Date: _____

ABSTRACT

THE EFFECT OF PLASTICIZER ON THE PROPERTIES OF BIOPLASTIC BASED ON CELLULOSE ACETATE FROM PINEAPPLE LEAVES

Conventional plastics have been used for packaging due to several advantages, such as resistance to water, oil, light, and heat and low cost. However, conventional plastics also contributes to environmental harm. It is believed that producing bioplastics from natural sources rather than conventional plastic would be an alternative for increasing the efficiency of the plastic industry. To improve the quality of bioplastics, cellulose is acetylated to produce cellulose acetate (CA). CA has a high glass transition temperature (Tg) and cannot be melt-processed as a raw material, so plasticizers are added to reduce stiffness and allow polymer melting without heat degradation. Preparation of cellulose acetate from pineapple leaves was done by purification of the leaves by alkali and bleaching treatment to extract the cellulose, followed by acetylation with acetic acid. Some goals need to be addressed which are to prepare and characterize the pineapple leaves cellulose acetate bioplastic films with various glycerol content, mechanical, thermal and physical properties through Fourier transform infrared (FTIR), tensile test, water solubility test and swelling test, respectively. The films were anticipated to have a water uptake percentage of greater than 50% since biopolymers are naturally hydrophilic. The cellulose acetate molecules in the film are connected by crosslinking, which could improve intermolecular interactions, thus improving the mechanical and thermal properties of the bioplastics. The goal of this work was to show that the CA found in pineapple leaves may be used in the production of biodegradable plastic and might be an acceptable replacement for conventional plastic. The idea of this research is to identify a new and effective process for producing bioplastics from various forms of agricultural waste such as pineapple leaves.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	5
TABLE OF CONTENTS	6-8
LIST OF FIGURES	9
LIST OF TABLES	10
LIST OF ABREVIATIONS	11
ABSTRACT	3
ABSTRAK	4

CHAPTER 1 INTRODUCTION

1.1 Background of study	12
1.2 Problem statement	15
1.3 Significance of study	17
1.4 Objective of study	17

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction to Sustainability	20
2.2 Plastic packaging	21
2.3 Bioplastic	23
2.4 Cellulose	26
2.5 Pineapple Leaves	30
2.6 Cellulose Acetate	34
2.7 Additive in plastic	38
2.7.1 Glycerol	41

2.8 Tensile strength and characterization

2.8.1 FTIR	43
2.8.1.1 FTIR of Cellulose	45
2.8.1.2 FTIR of Alkali treated cellulose and alkali + bleached treated cellulose	47
2.8.1.3 FTIR of Cellulose Acetate	49
2.8.2 Tensile Strength	50

CHAPTER 3 RESEARCH METHODOLOGY

3.1 Materials	
3.1.1 Materials	55
3.1.2 Apparatus	55
3.2 Method	
3.2.1 Preparation of cellulose acetate from pineapple leaf	56
3.2.2 Preparation of bioplastic film	57
3.3 Characterization and testing	
3.3.1 FTIR	58
3.3.2 Tensile testing	58
3.3.3 Solubility Test	59
3.3.4 Swelling Test	59

CHAPTER 4 RESULTS AND DISCUSSION

4.1 FTIR analysis of cellulose	61
4.2 FTIR analysis of bioplastic film	65
4.3 Tensile test	67
4.4 Solubility test	70
4.5 Swelling test	72