ENHANCED CONDUCTIVITY OF EPOXY-FILLED CARBON BLACK CONDUCTIVE INK VIA GREEN CO-SOLVENT TECHNIQUE ON PET SUBSTRATE

NUR AISYAH AMIRAH BINTI ABDUL RAZAK

Final Year Project Proposal Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2023

This Final Year Project Report entitled **"Enhanced Conductivity of Epoxy-filled Carbon Black Conductive Ink via Green co-solvent Technique on PET substrate**" was submitted by Nur Aisyah Amirah Binti Abdul Razak in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Sciences, and was approved by

> Dr Zuliahani Ahmad Supervisor Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr Siti Nurlia Binti Ali Project Coordinator B.Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr Nur Nasulhah Binti Kasim Head of Programme Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date:____

ABSTRACT

ENHANCED CONDUCTIVITY OF EPOXY-FILLED CARBON BLACK CONDUCTIVE INK VIA GREEN CO-SOLVENT TECHNIQUE ON PET SUBSTRATE

Epoxy based conductive ink is widely used in various electronic applications. However, epoxy alone is a non-conductive material, but if combined with carbon black filled epoxy it can become conductive. The objectives of this research is to prepare and characterize the various loading of CB (0%, 5%, 10%, 15% and 20%) filled epoxy conductive ink using Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet-Visible Diffuse Reflactance Spectra (UV-Vis/DRS) and to determine the conductivity properties on various loading of CB (0%, 5%, 10%, 15% and 20%) filled epoxy conductive in via Electrochemical Impedance Spectroscopy (EIS) and Multimeter. As opposed to other harmful techniques, the green co-solvent technique using ethanol and distilled water was used in this study and used SDS as a surfactant.. Then PET substrate was printed using print screen method. The CB-epoxy conductive ink's conductivity is predicted to be improved via addition of CB. From FTIR testing, CB peak shows greater shift towards higher wavenumber at 1607 cm⁻¹, indicating increased wavenumber at C=C stretching, contrasting 0%'s peak at 1605 cm⁻¹. This demonstrates that adding CB loadings causes the wavenumber to increase. The UV-Vis spectroscopy results for the CB-epoxy composite show two stretch peaks between 310 and 370 nm. The elongated double bond that is linked to $\pi - \pi^*$ transitions is believed to be the cause of CB's conductivity properties. The increased surface area of the carbon compounds exposed to UV light is most likely attributed to the resulting π $-\pi^*$ transitions. The results of the multimeter testing indicate that the resistivity and conductivity are inversely related. The resistivity increases from 1548.450 Ω .m to 3017.829 Ω .m when the percentage of CB was reduced from 15% to 0%. At 15% of CB it shows the highest conductivity with the lowest resistivity which is at 6.458 x 10^{-4} S/m and 1548.450 Ω .m respectively. Using EIS, 15% of CB shows the smallest curve among other CB loadings. This is further confirmed by 15% of CB formulation that has highest purity, causing epoxy decreasing resistance and increasing conductivity in epoxy-filled CB samples. According to the study, 15% CB is optimum loading form all the testing have been done. From this research, we have identifies optimal carbon black loading for epoxy-based conductive inks, improving electrical conductivity and enhancing performance of conductive ink.

TABLE OF CONTENTS

Page

ABSTRA ABSTRA ACKNO TABLE LIST OI LIST OI LIST OI	ACT AK WLEDGEMENTS OF CONTENTS 7 TABLES 7 FIGURES 7 SYMBOLS 7 ABBREVIATIONS	ii iii iv v vii viii ix x
CHAPT	ER 1 INTRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	6
1.3	Objectives and Aims	7
1.4	Significance of study	8
CHAPT	ER 2 LITERATURE REVIEW	9
2.1	Conductive ink	9
2.2	Epoxy as Binder Agents	11
2.3	Carbon Black as Filler	13
2.4	Conductive Ink Mixing Technique	15
2.5	Conductive Ink Production	17
2.6	Comparison Study of the Conductive Ink from Previous Researcher	20
CHAPT	ER 3 METHODOLOGY	23
3.1	Chemicals	23
3.2	Equipments	24
3.3	Experimental work	25
	3.3.1 Preparation and optimization of epoxy conductive ink filled	
	with carbon black	25
	3.3.2 Print screen PET substrate	26
3.4	Characterization and Testing	26
	3.4.1 Fourier-Transform Infrared Spectroscopy (FTIR)	26
	3.4.2 Ultraviolet-Visible Diffuse Reflactance Spectra (UV-Vis/DRS	S) 26
3.5	Conductivity Test	27
	3.5.1 Electrical Impendance Spectroscopy (EIS)	27
	3.5.2 Multimeter	28
СПАРТ	ED 4 DECHI TO AND DISCUSSION	20
	Characterization	29 20
4.1	Characterization 4.1.1 Fourier Transform Infrored Speetreseenv (ETID)	29 20
	4.1.1 Found-maistorin infrared spectroscopy (FIIK)	29

4.1.2 Ultraviolet-Visible Diffuse Reflactance Spectra (UV-Vis/DRS)

4.2	Conductivity Test 4.2.1 Multimeter	35 35	
	4.2.2 Electrochemical Impedance Spectroscopy (EIS)	37	
СНАР	TER 5 CONCLUSION AND RECOMMENDATIONS	40	
5.1	Conclusion	40	
5.2	Recommendations	42	
CITED REFERENCES			
Gantt-Chart			
CURRICULUM VITAE			