EFFECT OF POTASSIUM IODIDE (KI) SALT ADDITION ON POLYSACCHARIDE BASED NATURAL SOLID POLYMER ELECTROLYTE.

NURUL SYAMIMI BINTI SOHAIMI

Final Year Project Proposal Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2023

This Final Year Project Report entitled "Effect of Potassium Iodide (KI) Salt Addition on Polysaccharide Based Natural Solid Polymer Electrolyte" was submitted by Nurul Syamimi Binti Sohaimi in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Sciences, and was approved by

> Dr Nabilah Akemal Muhd Zailani Supervisor B.Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences University Teknologi MARA 02600 Arau Perlis

Dr Khuzaimah binti Nazir Co-Supervisor B.Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr. Siti Nurlia binti Ali Project Coordinator B.Sc (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr.Nur Nasulhah Kasim Head of Programme B.Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date:

ABSTRACT

EFFECT OF POTASSIUM IODIDE (KI) SALT ADDITION ON POLYSACCHARIDE BASED NATURAL SOLID POLYMER ELECTROLYTE

Energy storage devices often use highly conducting liquid electrolytes (LEs), which have poor safety and electrochemical stability. Alternatively, solid polymer electrolytes (SPEs) are gaining interest due to their safety and wider electrochemical stability. Natural polymers, such as polysaccharides, are preferred as polymer host as they contain oxygen that are suitable as coordinating site. In this study, flexible and free-standing SPE films were prepared by doping different wt.% of potassium iodide (KI) in the polysaccharide system using solution casting technique. The study investigated the effect of different amount of KI on the structural, electrical, and morphological properties of the polysaccharide-based electrolyte films using Fourier Transform Infrared Spectroscopy (FTIR), Electrochemical Impedance Spectroscopy (EIS), and Optical Microscopy (OM), respectively. The study successfully produced solid, flexible, and free-standing films of polysaccharide-based polymer electrolytes by doping up to 20 wt% of KI into the polysaccharide matrix via the solution casting technique. Flexible films were produced by minimizing hydrogen bonding between polysaccharide chains. This was achieved by the interaction of oxygen in the OH group of the polysaccharides with Li⁺ from the salt, as confirmed by FTIR analysis. However, adding >20 wt% of KI resulted in brittle films due to formation of ionic aggregates at high salt concentration. The FTIR analysis confirms complexation between hydroxyl and carbonyl groups of polysaccharides with K⁺ of the salt. This is shown by the shift in wavenumber or change in peak intensities for O-H stretching, C=O stretching, and C-O bending peaks after adding KI. Adding up to 20 wt% of KI increased ionic conductivity to 1.40 X 10-8 S cm⁻¹, which is two orders of magnitude higher than the pure polysaccharide system. This was due to the increased charge carrier and improved amorphous phase caused by polymer-salt interaction, as proven in FTIR analysis. Additionally, the hydrogen bonds causing the brittle structure of polysaccharide have been reduced as OH stretching of polysaccharide interacts with the Li⁺ of the salt. This is confirmed by OM studies that show the presence of a polymer-salt network in K1 and K2 optical micrographs. The ionic conductivity decreases when 30 wt% of KI is added due to ion aggregate formation, confirmed by the disappearance of the polymer-salt network in the surface morphology of K3. The preparation of KI-doped polysaccharide-based PE in this study align with the Sustainable Development Goals 7 (SDG7) on affordable and clean energy and the 12th Shared Prosperity Vision 2030 (KEGA12) on the green economy.

TABLE OF CONTENTS

ABST	FRACT		ii	
ABSTRAK ACKNOWLEDGEMENTS				
				TABI
LIST	LIST OF TABLES			
LIST OF FIGURES LIST OF SYMBOLS			vii viii	
			ix	
LIST	OF ABBF	REVIATIONS	Х	
CHA	PTER 1 IN	NTRODUCTION	1	
1.1	Backgro	ound of study	1	
1.2	0	n statement		
1.3	Signific	ance of study	5 7	
1.4	Objectiv	ve of study	7	
CHA	PTER 2 L	ITERATURE REVIEW	8	
2.1	Polymer	electrolytes	8	
2.2	Natural	synthetic polymer electrolytes	12	
2.3	Polysac		14	
2.4	Polysac	charides as polymer electrolyte	15	
2.5	Potassium iodide (KI) salt as a dopant in polymer electrolyte system		16	
2.6	Preparat	tion of polysaccharide based natural polymer electrolyte films	18	
2.7	Character	erization techniques in polymer electrolyte studies	20	
2.8	Fourier	Transform Infrared Spectroscopy (FTIR)	21	
2.9	Electrochemical Impedance Spectroscopy (EIS)		24	
2.10	Optical	Microscopy (OM)	28	
CHA	PTER 3 M	IETHODOLOGY	30	
3.1	Chemic	als and materials	30	
3.2	Instrum	ents	31	
3.3	Methods		32	
	3.3.1	Preparation of polysaccharide-based electrolyte fim	32	
	3.3.2	Characterization techniques.	33	
CHA	PTER 4 R	ESULTS AND DISCUSSIONS	36	
4.1	Formati	on of KI-doped polysaccharide-based PE films	36	
4.2	FTIR st	udies of KI-doped polysaccharide-based PE films	37	
4.3	Morpho	logical studies of KI-doped polysachharide-based PE films.	41	
4.4	Ionic Co	onductivity studies of KI-doped polysaccharide-based PE films.	44	

CHAPTER 5 CONCLUSION AND RECOMMENDATION	51
CITED REFERENCES	54
CURRICULUM VITAE	62