EFFECT OF PLATINUM DOPED TiO₂ FOR PHOTOELECTROCHEMICAL DEGRADATION OF VARIOUS DYES

NURUL QISTINA BINTI MOHAMMAD AZMAN

Final Year Project Proposal Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2023

This Final Year Project Report entitled "Effect of Platinum Doped TiO₂ for Photoelectrochemical Degradation of Various Dyes" was submitted by Nurul Qistina binti Mohammad Azman in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Sciences, and was approved by

Dr. Wan Izhan Nawawi bin Wan Ismail Supervisor B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr. Solhan binti Yahya B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr. Siti Nurlia binti Ali Project Coordinator B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Nur Nasulhah binti Kasim Head of Programme B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date: 4 AUGUST 2023

ABSTRACT

EFFECT OF PLATINUM DOPED TiO₂ FOR PHOTOELECTROCHEMICAL DEGRADATION OF VARIOUS DYES

In this study, unmodified and Pt doped TiO₂ were used as photocatalysts in photoelectrochemical (PEC) and electrochemical (EC) processes. Various dyes ie; rhodamine B, methylene blue, methyl orange and crystal violet were used in this study as model degradation pollutants to determine the effect of Pt on TiO₂. From the result, Pt-TiO₂ has shown better photocatalytic performance as compared with TiO₂ for all dyes. Crystal violet (CV) dye has shown the highest degradation after 30 minutes under PEC process by using Pt-TiO₂ sample which was 99.5% removal compared with rhodamine B, methylene blue and methyl orange which ca. 95.2, 98 and 91.8% respectively. CV had also shown the highest k-value under same condition which was ca. 0.212 min⁻¹, where k-value of 0.088, 0.114 and 0.072 min⁻¹ were observed under rhodamine B, methylene blue and methyl orange respectively. PEC process was also proven to be more efficient than EC as light irradiation in PEC process plays a vital role in degradation of dyes. Pt peaks were observed in EDX which indicates the present of Pt element in Pt-TiO₂. It was further confirmed by XRD analysis where it shows the peaks representing Pt element at 38.37, 44.03, 64.98 and 78.14°. From the calculation of XRD spectrum, crystalline size of Pt-TiO₂ has decreased compared to unmodified TiO₂. It indicates that the presence of Pt onto TiO₂ plays an important role in enhancing PEC degradation process by decreasing the crystalline size of Pt-TiO₂.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRACT		Page v vi viii ix iii
CHA	APTER 1 INTRODUCTION	
1.1	Background of study	1
1.2		3
1.3		4
1.4	Objectives of study	4
CIL		
СН 2.1	APTER 2 LITERATURE REVIEW	6
2.1	Photocatalysis 2.1.1 Photocatalyst semiconductor	8
	$2.1.2 \text{ TiO}_2$	11
	2.1.2 Modification of TiO ₂	11
	2.1.4 Non-metal doped TiO_2	14
	2.1.5 Metal doped TiO ₂	16
2.2	Photoelectrochemical (PEC) and its mechanism	18
	2.2.1 PEC for degradation of dyes	22
	2.2.2 Dye sensitization process	23
	2.2.3 Sacrificial agent	26
2.3	Cationic dyes	26
	2.3.1 Rhodamine B	29
	2.3.2 Methylene blue	31
	2.3.3 Crystal violet	33
2.4	Anionic dyes	35
	2.4.1 Methyl orange	37
	2.4.2 Congo red	38
	2.4.3 Reactive black 5	40

CHAPTER 3 METHODOLOGY		
3.1	Chemicals	41
3.2	Apparatus and materials	41
3.3	Instrument	42
3.4	Methodology	42
	3.4.1 Preparation of Platinum doped TiO ₂ and immobilization techniques.	42
	3.4.2 Preparation of 4 dyes (Rhodamine B, Methylene blue, Methyl orange and Crystal violet	44
	3.4.3 Photoelectrochemical degradation study	44
	3.4.3.1 Determination of the photoelectrochemical degradation rate of dyes	45
	3.4.4 Characterization study	46

CHAPTER 4 RESULTS AND DISCUSSION

48
51
54
56
59
61
1

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 64

CITED REFERENCES APPENDICES CURRICULUM VITAE