

UNIVERSITI TEKNOLOGI MARA

CHM626: ORGANIC SPECTROSCOPY

Course Name (English)	ORGANIC SPECTROSCOPY APPROVED				
Course Code	CHM626				
MQF Credit	3				
Course Description	This course deals primarily with the spectroscopic methods used for structure determination of organic compounds, namely, infrared spectroscopy (IR), 1D and 2D nuclear magnetic resonance spectroscopy (NMR), ultraviolet-visible spectroscopy (UV-Vis) as well as mass spectrometry (MS) including hyphenated techniques. Instructional methods include lectures, problem-based learning and blended learning. The outcomes shall be assessed through a variety of tools which include quizzes, tests, assignments and final examination.				
Transferable Skills	Structure elucidation of simple organic compounds				
Teaching Methodologies	Lectures, Presentation, Problem-based Learning				
CLO	CLO1 Explain the basic theory of IR, UV-Vis, 1H, 13C NMR and mass spectrometry and describe each of their application in structure elucidation of simple organic compounds. CLO2 Elucidate chemical structures of organic compounds from the interpretation of conjoint IR-UV-NMR-MS spectra. CLO3 Elucidate structures of organic compounds from conjoint IR-UV-Vis-NMR-MS spectra Demonstrate communication skills in work collaboratively with peers and communicate effectively with instructor and peers on structure elucidation problems.				
Pre-Requisite Courses	No course recommendations				
Topics					
1. 1. Molecular Formulas 1.1) Index of Hydrogen Deficiency, degree of unsaturation 1.2) Rule of Thirteen					
2. Applications of Infrared Spectroscopy 2.1) Correlation Charts and Tables 2.2) Approaching the Analysis of A Spectrum 2.3) A Survey of The Important Functional Groups with Examples 2.4) Factors That Influence the C=O S					
3. 3. Nuclear MAgnetic Resonance (NMR) Spectroscopy 3.1) Principles					
4. 4. NMR: 4.1) Chemical Shift and its measurement					
5. 5. Proton NMR Spectroscopy: 5.1) Spin-spin coupling: Tree diagram					
	6. 6. Proton NMR Spectroscopy 6.1) First order and second order, spin systems				
7. 7. NMR Spectros	7. 7. NMR Spectroscopy 7.1) Problem based on IR and 1H NMR				
8. 8. Carbon 13 NMR Spectroscopy 8.1) Principles					
9. 9. NMR Spectros	9. 9. NMR Spectroscopy 9.1) problem based on IR, 1D 1H and 13C NMR				

Faculty Name : FACULTY OF APPLIED SCIENCES

© Copyright Universiti Teknologi MARA

Start Year : 2020

Review Year : 2023

10. 10. 2D NMR Techniques 10.1) COSY 11. 11. 2D NMR Techniques 11.1) HETCOR, HMQC and HSQC 12. 12. 2D NMR Techniques 12.1) HMBC and NOESY 13. 13. NMR Spectroscopy problems 13.1) Based on IR, 1D and 2D NMR 14. 14. Mass Spectrometry 14.1) Principles and instrumentation 15. 15. Mass spectrometry 15.1) Fragmentation patterns 16. 16. Mass spectrometry 16.1) problems with NMR and IR data 17. 17. UV-Vis spectroscopy 17.1) Principles and application 18. 18. Uv-Vis Spectroscopy 18.1) The Woodward Fiser Rules for Dienes and Enones

19. 19. Conjoint IR-UV/VIS-NMR-Mass Spectrometry problems 19.1) N/A

Faculty Name : FACULTY OF APPLIED SCIENCES

© Copyright Universiti Teknologi MARA

Start Year : 2020

Review Year : 2023

Assessment Breakdown	%
Continuous Assessment	60.00%
Final Assessment	40.00%

Details of Continuous Assessment				
	Assessment Type	Assessment Description	% of Total Mark	CLO
	Assignment	Assignment and presentation	20%	CLO3
	Test	Test 2	20%	CLO2
	Test	Test 1	20%	CLO1

Reading List	Recommended Text	Donald Pavia, Gary Lampman, George Kriz, James Vyvyan 2008, <i>Introduction to Spectroscopy</i> , Fourth Ed., Cengage Learning	
Article/Paper List	This Course does not have any article/paper resources		
Other References	 Book Phillip Crews, Jaime Rodríguez & Marcel Jaspars 2010, Organic Structure Analysis, Oxford University Press, US Book Robert M Silverstein, Francis X. Webster, David J. Kremle 7, Spectrometric Identification of Organic Compounds 		

Faculty Name : FACULTY OF APPLIED SCIENCES

© Copyright Universiti Teknologi MARA

Start Year : 2020

Review Year : 2023