

WAN MOHAMAD DZULFEKAR IRFAN WAN MOHD DZULKARNAIN,
MUHAMMAD FAIZ ADZEEM MOHD FADLY,

Differentiation

AISHAH MAHAT

WAN MOHAMAD DZULFEKAR IRFAN WAN MOHD DZULKARNAIN, MUHAMMAD FAIZ ADZEEM MOHD FADLY,

CONTENTS

Disclaimer 4
Preface 5
Sum and Differences 6
Product Rule 13
Trigonometric Functions 16
Exponential Functions 22
Logarithmic Functions 26
Reference 34

DISCLAIMER

Copyright @ 2024 by Aishah Mahat, Muhammad Faiz Adzeem Mohd Fadly, Wan Mohamad Dzulfekar Irfan Bin Wan Mohd Dzulkarnain
AuthorAishah Mahat
Wan Mohamad Dzulfekar Irfan Bin Wan Mohd DzulkarnainMuhammad Faiz Adzeem Bin Mohd Fadly
Editor \& Illustrator
Aishah Mahat
Wan Mohamad Dzulfekar Irfan Bin Wan Mohd DzulkarnainMohd Faiz Adzeem Bin Mohd FadlyPublisher:Universiti Teknologi MARACawangan Johor Kampus Pasir GudangJalan Purnama, Bandar Seri Alam, 81750 Masai
Mac 2024
e ISBN: 978-967-0033-22-8

PREFACE

This e-book, Differentiation, aimed to help students in mathematics. Our target audience for this module are students who take foundation courses. This e-book includes many examples of varying types of questions on the topic of differentiation, which would help students to become more familiar with differentiation questions. Furthermore, solutions for these questions are provided, which would also help students learn how to solve familiar questions.

QUESTIONS

AND

SOLUTIONS

2) $f(x)=4 x^{3}-6 x^{2}+2 x$
3) $f(x)=3 x+\frac{1}{x}$
4) $f(x)=5 x^{3}-8 x^{2}$
5) $f(x)=\sqrt{x}$

Solution

$$
\begin{aligned}
f^{\prime}(x) & \left.=2\left(3 x^{2-`}\right)+5 x^{1-1} 1\right) \\
& =6 x+5 \\
f^{\prime}(x) & \left.=3\left(4 x^{3-1}\right)-2\left(6 x^{2-1}\right)+2 x^{1-1} 2\right) \\
& =12 x^{2}-12 x+2
\end{aligned}
$$

$$
f^{\prime}(x)=3 x^{1-1}+\left(-1 x^{(-1-1)}\right)^{3)}
$$

$$
=3-x^{-2}
$$

$$
f^{\prime}(x)=3\left(5 x^{3-1}\right)-2\left(8 x^{2-1)}\right)^{4)}
$$

$$
=15 x^{2}-16 x
$$

5) $f^{\prime}(x)=\frac{1}{2} x^{\frac{1}{2}-1}$

$$
\begin{aligned}
& =\frac{1}{2} x^{-\frac{1}{2}} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

2. Differentiate each of the following with respect to x .

$$
\begin{aligned}
f(x) & \left.=x^{4}-3 x^{2} 1\right) \\
f(x) & \left.=-7 x^{4}+x 2\right) \\
f(x) & \left.=4 x^{3}-2 x^{2}+5 x 3\right) \\
f(x) & \left.=\frac{1}{2} x^{2}+3 x+14\right) \\
\text { 5) } f(x) & =\sqrt{x}+2 x^{2}+3
\end{aligned}
$$

Solution

$$
\begin{aligned}
f^{\prime}(x) & \left.=4 x^{4-1}-2\left(3 x^{2-1}\right) 1\right) \\
& =4 x^{3}-6 x \\
f^{\prime}(x) & \left.=4\left(-7 x^{4-1}\right)+x^{1-1} 2\right) \\
& =-28 x^{3}+1 \\
f^{\prime}(x) & \left.=3\left(4 x^{3-1}\right)-2\left(2 x^{2-1}\right)+5 x^{1-1} 3\right) \\
& =12 x^{2}-4 x+5
\end{aligned}
$$

4) $f^{\prime}(x)=2\left(\frac{1}{2} x^{(2-1)}\right)+3 x^{1-1}$

$$
=x+3
$$

5) $f^{\prime}(x)=\frac{1}{2} x^{\frac{1}{2}-1}+2\left(2 x^{2-1}\right)$

$$
\begin{aligned}
& =\frac{1}{2} x^{-\frac{1}{2}}+4 x \\
& =\frac{1}{2 \sqrt{x}}+4 x
\end{aligned}
$$

3.Differentiate each of the following with respect to x.

$$
\left.f(x)=2 x^{5}-x^{4} 1\right)
$$

2) $f(x)=\frac{4}{x}+\sqrt{x}$
3) $f(x)=3 x^{9}-x^{3}$

$$
\left.f(x)=3 x^{5}+9 x 4\right)
$$

5) $f(x)=6 x^{3}+\frac{1}{x}$

Solution

$$
\begin{aligned}
f^{\prime}(x) & \left.=5\left(2 x^{5-1}\right)-4 x^{4-1} 1\right) \\
& =10 x^{4}-4 x^{3}
\end{aligned}
$$

2) $f^{\prime}(x)=-1\left(4 x^{-1-1}\right)+\frac{1}{2} x^{\frac{1}{2}-1}$

$$
=-\frac{4 x}{x^{2}}+\frac{1}{2 \sqrt{x}}
$$

$$
\left.f^{\prime}(x)=9\left(3 x^{9-1}\right)+3 x^{3-1} 3\right)
$$

$$
=27 x^{8}+3 x^{2}
$$

$$
\begin{aligned}
f^{\prime}(x) & \left.=5\left(3 x^{5-1}\right)+9 x^{1-1} 4\right) \\
& =15 x^{4}+9
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & \left.=3\left(6 x^{3-1}\right)+\left(-1 x^{(-1-1)}\right) 5\right) \\
& =18 x^{2}-x^{-2}
\end{aligned}
$$

4.Differentiate each of the following with respect to x .

$$
\begin{aligned}
f(x) & \left.=23 x-4 x^{4} 1\right) \\
f(x) & =\sqrt[4]{x} 2) \\
f(x) & \left.=x^{-7}-83\right) \\
\text { 4) } f(x) & =1-6 x^{\frac{5}{2}} \\
\text { 5) } f(x) & =x^{4}+2 x^{\frac{5}{2}}
\end{aligned}
$$

Solution

$$
\begin{aligned}
f^{\prime}(x) & \left.=23 x^{1-1}-4\left(4 x^{4-1}\right) 1\right) \\
& =23-16 x^{3}
\end{aligned}
$$

2) $f^{\prime}(x)=\frac{1}{4} x^{\frac{1}{4}-1}$

$$
=\frac{1}{4} x^{-\frac{3}{4}}
$$

$$
\left.f^{\prime}(x)=-7\left(x^{-7-1}\right)^{3}\right)
$$

$$
=-7 x^{-8}
$$

$$
\left.f^{\prime}(x)=\frac{5}{2}\left(-6 x^{\frac{5}{2}-1}\right) 4\right)
$$

$$
=-15 x^{\frac{3}{2}}
$$

5) $f^{\prime}(x)=4 x^{4-1}+\frac{5}{2}\left(2 x^{\frac{5}{2}-1}\right)$

$$
=4 x^{3}+5 x^{\frac{3}{2}}
$$

5.Differentiate each of the following with respect to x .

1) $f(x)=\frac{1}{2} x^{2}-4 x^{-\frac{3}{2}}$

Solution

1) $f^{\prime}(x)=2\left(\frac{1}{2} x^{2-1}\right)-\left(-\frac{3}{2} 4 x^{-\frac{3}{2}-1}\right)$
$=x+6 x^{-\frac{5}{2}}$

QUESTIONS AND

SOLUTIONS

Theorem

Let $\mathrm{y}=\mathrm{uv}$, where u and v are two differentiable functions, then
$f^{\prime}(x)=u v^{\prime}+v u^{\prime}$
Differentiate each of the following in respect to x .

$$
\begin{aligned}
& f(x)=(2 x-1)(4 x+3) 1) \\
& \left.f(x)=4 x^{3}(2-3 x) 2\right)
\end{aligned}
$$

Solution

$$
\begin{aligned}
& f(x)=(2 x-1)(4 x+3) \\
& u=2 x-1 \quad v=4 x+3 \\
& \begin{aligned}
u^{\prime}=2
\end{aligned} \\
& \begin{aligned}
f^{\prime}(x) & =u v^{\prime}+v u^{\prime} \\
& =(2 x-1)(4)+(4 x+3)(2) \\
& =8 x-4+8 x+6 \\
& =16 x+2
\end{aligned} \\
& \begin{aligned}
& f(x)=4 x^{3}(2-3 x) \\
& u=4 x^{3} \\
& u^{\prime}= 8 x^{2}
\end{aligned} \\
& \begin{aligned}
f^{\prime}(x) & =u v^{\prime}+v u^{\prime} \\
& =(4 x)(-3)+(2-3 x)\left(8 x^{2}\right) \\
& =-12 x+16 x^{2}-24 x^{3}
\end{aligned}
\end{aligned}
$$

QUESTIONS AND

 SOLUTIONS

1. Find the derivatives of the following functions.
1) $f(x)=\sin x$
2) $f(x)=\cos 2 x$
3) $f(x)=\sin 2 x$
4) $f(x)=\sin (2 x)+4 x$

Solution

$$
\begin{aligned}
f^{\prime}(x) & \left.=\cos x\left(\frac{d}{d x} x\right) 1\right) \\
& =\cos x \\
f^{\prime}(x) & \left.=-\sin 2 x\left(\frac{d}{d x} 2 x\right) 2\right) \\
& =-2 \sin 2 x \\
f^{\prime}(x) & \left.=\cos 2 x\left(\frac{d}{d x} 2 x\right) 3\right) \\
& =2 \cos 2 x \\
f^{\prime}(x) & \left.=\cos 2 x\left(\frac{d}{d x} 2 x\right)+4 x^{1-1} 4\right) \\
& =2 \cos 2 x+4
\end{aligned}
$$

2.Find the derivatives of the following functions.

1) $f(x)=\cos ^{2} x$
2) $f(x)=3 \cos x-2 \sin 2 x$
3) $f(x)=\tan 2 x$
4) $f(x)=\tan ^{2} x$

Solution

$$
\begin{aligned}
f^{\prime}(x) & \left.=2 \cos ^{2-1} x\left(\frac{d}{d x} \cos x\right) 1\right) \\
& =2 \cos x(-\sin x) \\
& =-2 \cos x \sin x
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =-3 \sin x-2 \sin 2 x(2) 2) \\
& =-3 \sin x-4 \sin 2 x
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & \left.=\sec ^{2} 2 x\left(\frac{d}{d x} 2 x\right) 3\right) \\
& =2 \sec ^{2} 2 x
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & \left.=2 \tan ^{2-1} x\left(\frac{d}{d x} \tan x\right) 4\right) \\
& =2 \tan x \sec ^{2} x
\end{aligned}
$$

3.Find the derivatives of the following functions.
a) $f(x)=\cos 3 x$
b) $f(x)=\tan 4 x$
c) $f(x)=\sin ^{2} x+\cos ^{2} x$
d) $f(x)=\tan x+\cot x$
e) $f(x)=\sin 2 x+\cos 3 x$

Solution

$$
\begin{aligned}
f^{\prime}(x) & =\cos 3 x(3) \mathrm{a}) \\
& =3 \cos 3 x \\
f^{\prime}(x) & \left.=\sec ^{2} 4 x(4) \mathrm{b}\right) \\
& =4 \sec ^{2} 4 x
\end{aligned}
$$

$$
\left.f^{\prime}(x)=2 \sin ^{2-1} x(\cos x)+\left(2 \cos ^{2-1} x(-\sin x)\right) \mathrm{c}\right)
$$

$$
=2 \sin x \cos x-2 \cos x \sin x
$$

$$
=0
$$

$$
\left.f^{\prime}(x)=\sec ^{2} x-\csc ^{2} x \mathrm{~d}\right)
$$

$$
\begin{aligned}
f^{\prime}(x) & =\cos 2 x(2)+(-\sin 3 x(3)) \mathrm{e}) \\
& =2 \cos 2 x-3 \sin 3 x
\end{aligned}
$$

4.Find the derivatives of the following functions.
a) $f(x)=\tan 5 x$
b) $f(x)=\sin 3 x$
c) $f(x)=\cos 2 x$
d) $f(x)=\tan x \cot x$

Solution

$$
\begin{aligned}
& f^{\prime}(x)\left.=\sec ^{2} 5 x(5) \mathrm{a}\right) \\
&=5 \sec ^{2} 5 x \\
& f^{\prime}(x)=\cos 3 x(3) \mathrm{b}) \\
&=3 \cos 3 x \\
& f^{\prime}(x)=-\sin 2 x(2) \mathrm{c}) \\
&=-2 \sin 2 x \\
& f(x)=\tan x \cot x \\
& u=\tan x \quad v=\cot x \\
& u^{\prime}= \sec ^{2} x \quad v^{\prime}=-\csc ^{2} x \\
& f^{\prime}(x)=u v^{\prime}+v u^{\prime} \\
&=(\tan x)\left(\csc ^{2} x\right)+\left(\cot ^{2}\right)\left(\sec ^{2} x\right) \\
&=\tan x \csc ^{2} x+\cot x \sec ^{2} x
\end{aligned}
$$

QUESTIONS AND

 SOLUTIONS

Example:
$f(x)=e^{x}$

$$
\begin{aligned}
f^{\prime}(x) & =e^{x}\left(\frac{d}{d x} x\right) \\
& =e^{x}
\end{aligned}
$$

1. Find $f^{\prime}(x)$ of the following functions.
a) $f(x)=e^{3 x}$
b) $f(x)=e^{-2 x}$
c) $f(x)=e^{4 x}$
d) $f(x)=2 e^{-3 x}$

Solution

$$
\begin{aligned}
f^{\prime}(x) & \left.=e^{3 x}(3) \mathrm{a}\right) \\
& =3 e^{3 x}
\end{aligned}
$$

$$
\left.f^{\prime}(x)=e^{-2 x}(-2) \mathbf{b}\right)
$$

$$
=-2 e^{-2 x}
$$

$$
\begin{aligned}
f^{\prime}(x) & \left.=e^{4 x}(4) \mathrm{c}\right) \\
& =4 e^{4 x} \\
f^{\prime}(x) & \left.=2 e^{-3 x}(-3) \mathrm{d}\right) \\
& =-6 e^{-3 x}
\end{aligned}
$$

2. Differentiate each of the following with respect to x .
a) $f(x)=e^{2 x}+3 e^{-x}$
b) $f(x)=e^{2 x}-e^{-x}$
c) $f(x)=e^{5 x}+4 e^{2 x}$
d) $f(x)=e^{-4 x}-3 e^{3 x}$
e) $f(x)=e^{4 x} e^{-3 x}$

Solution

$$
\begin{aligned}
f^{\prime}(x) & \left.=e^{2 x}(2)-3 e^{-x} \mathrm{a}\right) \\
& =2 e^{2 x}-3 e^{-x} \\
f^{\prime}(x) & \left.=e^{2 x}(2)+e^{-x} \mathrm{~b}\right) \\
& =2 e^{2 x}+e^{-x} \\
f^{\prime}(x) & \left.=e^{5 x}(5)+4 e^{2 x}(2) \mathrm{c}\right) \\
& =5 e^{5 x}+8 e^{2 x} \\
f^{\prime}(x) & \left.=e^{-4 x}(-4)-3 e^{3 x}(3) \mathrm{d}\right) \\
& =-4 e^{-4 x}-9 e^{3 x} \\
f(x) & \left.=e^{4 x-3 x} \mathrm{e}\right) \\
& =e^{x} \\
f^{\prime}(x) & =e^{x}
\end{aligned}
$$

QUESTIONS AND

 SOLUTIONS

Simple Logarithmic Functions

1.Find the derivatives of the following functions

$$
\left.f(x)=\ln \left(x^{2)}\right) \mathrm{a}\right)
$$

b) $f(x)=\ln (\sin x)$
$f(x)=\ln (\cos x) \mathrm{c})$
d) $f(x)=\ln \left(e^{2 x}\right)$

Solution

$$
\begin{aligned}
f^{\prime}(x) & \left.=\frac{1}{x^{2}}(2 x) \mathrm{a}\right) \\
& =\frac{2}{x} \\
f^{\prime}(x) & \left.=\frac{1}{\sin x}(\cos x) \mathrm{b}\right) \\
& =\cot x \\
f^{\prime}(x) & \left.=\frac{1}{\cos x}(-\sin x) \mathrm{c}\right) \\
& =-\tan x \\
f(x) & =2 x \mathrm{~d}) \\
f^{\prime}(x) & =2
\end{aligned}
$$

Sums and Differences in Logarithmic Functions

1.Differentiate the following functions with respect to x.
a) $f(x)=\ln \left(x^{4}+2 x^{2}\right)$
b) $f(x)=\ln (2 x+1)$
c) $f(x)=\ln (3 x+4)$
d) $f(x)=\ln \left(5 x^{2}+2 x\right)$

Solution

a) $f^{\prime}(x)=\frac{1}{x^{4}+2 x^{2}}\left(4 x^{3}+4 x\right)$

$$
=\frac{4 x^{3}+4 x}{x^{4}+2 x^{2}}
$$

b) $f^{\prime}(x)=\frac{1}{2 x+1}$

$$
\begin{equation*}
=\frac{2}{2 x+1} \tag{2}
\end{equation*}
$$

c) $f^{\prime}(x)=\frac{1}{3 x+4}(3)$

$$
=\frac{3}{3 x+4}
$$

d) $f^{\prime}(x)=\frac{1}{5 x^{2}+2 x}(10 x+2)$
$=\frac{10 x+2}{5 x^{2}+2 x}$
2.Find the derivatives of the following functions.
a) $f(x)=\ln \left(x^{3}+2 x\right)$
b) $f(x)=\ln \left(4 x^{2}+3 x+1\right)$
c) $f(x)=\ln \left(2 x^{3}+x\right)$
d) $f(x)=\ln \left(5 x^{4}+2 x^{2}+3\right)$

Solution
a) $f^{\prime}(x)=\frac{1}{x^{3}+2 x}\left(3 x^{2}+2\right)$

$$
=\frac{3 x^{2}+2}{x^{3}+2 x}
$$

b) $f^{\prime}(x)=\frac{1}{4 x^{2}+3 x+1}(8 x+3)$
$=\frac{8 x+3}{4 x^{2}+3 x+1}$
c) $f^{\prime}(x)=\frac{1}{2 x^{3}+x}\left(6 x^{2}+1\right)$

$$
=\frac{6 x^{2}+1}{2 x^{3}+x}
$$

d) $f^{\prime}(x)=\frac{1}{5 x^{4}+2 x^{2}+3}\left(20 x^{3}+4 x\right)$

$$
=\frac{20 x^{3}+4 x}{5 x^{4}+2 x^{2}+3}
$$

Trigonometry in Logarithmic Functions

1.Differentiate the following functions with respect to x .
a) $f(x)=\ln (\tan x)$
b) $f(x)=\ln (\sin 2 x)$
c) $f(x)=\ln (\cos 3 x)$
d) $f(x)=\ln (\tan 4 x)$

Solution

a) $f^{\prime}(x)=\frac{1}{\tan x}\left(\sec ^{2} x\right)$
$=\frac{\sec ^{2} x}{\tan x}$
b) $f^{\prime}(x)=\frac{1}{\sin 2 x}(2 \cos 2 x)$ $=2 \cot 2 x$
c) $f^{\prime}(x)=\frac{1}{\cos 3 x}(-3 \sin 3 x)$

$$
=-3 \tan 3 x
$$

d) $f^{\prime}(x)=\frac{1}{\tan 4 x}\left(4 \sec ^{2} 4 x\right)$
$=\frac{4 \sec ^{2} 4 x}{\tan 4 x}$

Exponential in Logarithmic Functions

1.Find the derivatives of the following functions.
a) $f(x)=\ln \left(e^{-3 x}\right)$
b) $f(x)=\ln \left(e^{4 x}\right)$
c) $f(x)=\ln \left(e^{2 x}\right)-\ln (\cos 2 x)$
d) $f(x)=\ln \left(e^{2 x} * \sin x\right)$

Solution

a) $f(x)=-3 x$

$$
f^{\prime}(x)=-3
$$

b) $f(x)=4 x$

$$
f^{\prime}(x)=4
$$

c) $f^{\prime}(x)=2-\frac{1}{\cos 2 x}(-2 \sin 2 x)$

$$
=2+2 \tan 2 x
$$

d) $f(x)=\ln \left(e^{2 x}\right)+\ln (\sin x)$

$$
\begin{aligned}
f^{\prime}(x) & =2+\frac{1}{\sin x}(\cos x) \\
& =2+\cot x
\end{aligned}
$$

2.Differentiate the following functions.
a) $f(x)=\ln \left(e^{-3 x+4}\right)-\ln (\tan 3 x)$
b) $f(x)=\ln (\csc 4 x)$
c) $f(x)=\ln (\sec 5 x)$
d) $f(x)=\ln (\cot 6 x)$

Solution
a) $f(x)=(-3 x+4)-\ln (\tan 3 x)$

$$
\begin{aligned}
f^{\prime}(x) & =-3-\frac{1}{\tan 3 x}\left(3 \sec ^{2} 3 x\right) \\
& =-3-\frac{3 \sec ^{2} 3 x}{\tan 3 x}
\end{aligned}
$$

b) $f^{\prime}(x)=\frac{1}{\csc 4 x}(-4 \csc 4 x \cot 4 x)$
$=-4 \cot 4 x$
c) $f^{\prime}(x)=\frac{1}{\sec 5 x}(5 \sec 5 x \tan 5 x)$
$=5 \tan 5 x$
d) $f^{\prime}(x)=\frac{1}{\cot 6 x}\left(-6 \csc ^{2} 6 x\right)$
$=\frac{-6 \csc ^{2} 6 x}{\cot 6 x}$

REFERENCE

1. Pritam G. (2021, June). Differentiation Formulas \& Rules: Various Derivative Formulas Of Trigonometric, Hyperbolic, Logarithmic \& More. Retrieved from Differentiation Formulas \& Rules: Various Derivative Formulas Of Trigonometric, Hyperbolic, Logarithmic \& More (embibe.com).
2. Gaur. (2018, August). Differentiation. Retrieved from Differentiation | mathematics | Britannica.
3. Roberts. (2012). Natural Exponential Function and Natural Logarithmic Function. Retrieved from Natural Exponential Function and Natural Logarithmic Function - MathBitsNotebook(A2 CCSS Math).
4. Aishah, I. \& Azmi, N. (2020). Calculus 1 MAT183. Universiti Teknologi Mara.
5. Jesus E. (2020). Proof of the Derivatives of sin, cos and tan. Retrieved from Derivatives of the Trigonometric Functions (mathsisfun.com)

