

UNIVERSITI TEKNOLOGI MARA

CHM477: INTRODUCTORY INORGANIC CHEMISTRY

Course Name (English)	INTRODUCTORY INORGANIC CHEMISTRY APPROVED				
Course Code	CHM477				
MQF Credit	3				
Course Description	This course will interactively engage students cognitively and scientifically in areas of bonding in chemical substances particularly those involving elements in the second period of the periodic table, transition metals and ligands (coordination compounds) and the role these compounds play in some biological systems. The designated lecture sessions are used to describe, discuss and employ important theories in inorganic chemistry.				
Transferable Skills	Skills in synthesis inorganic compounds				
Teaching Methodologies	Lectures, Lab Work				
CLO	CLO1 Explain the Valance Bond Theory, Molecular Orbital Theory and Crystal Field Theory CLO2 Describe the stability formation of complex ions related to chelate and macrocyclic effects CLO3 Discuss the importance of metal complexes in biological systems CLO4 Conduct experiments and write reports on experimental findings in a scientific manner				
Pre-Requisite Courses	No course recommendations				
Topics	Topics				
1. Valence Bond Theory 1.1) Hybridization of atomic orbitals (sp, sp2, sp3, sp3d and sp3d2) 1.2) Orbital shapes and energies (s, p and d)					
2. Molecular Orbital Theory 2.1) Types of molecular orbitals 2.2) Homonuclear diatomic molecules (second period elements) 2.3) Heteronuclear diatomic molecules (NO, HF and CN) 2.4) Bond order					
3. Metallic Bonding 3.1) Electron sea model 3.2) Band theory of metals					
4. First Row Transition Metals4.1) Electron configuration4.2) General characteristics of transition metals, physical properties and variables4.3) Oxidation states					

5. Coordination Compounds

- 5.1) Ligands 5.2) Coordination number 5.3) Nomenclature

- **6. Isomerism**6.1) Structural isomerism: ionization, hydrate, linkage and coordination isomers
 6.2) Stereoisomerism: geometric and optical isomers

7. Bonding Theory 7.1) Valance bond theory: sp3, dsp2, sp3d2 and d2sp3

Faculty Name: FACULTY OF APPLIED SCIENCES Start Year : 2020 © Copyright Universiti Teknologi MARA Review Year: 2018

- 8. Crystal Field Theory
 8.1) Octahedral complexes
 8.2) Tetrahedral complexes
 8.3) Square planar complexes

9. Properties of Complexes

- 9.1) Spectrochemical series of ligands 9.2) Magnetism
- 9.3) Coloured compounds

- 10. Stabilization of Complex Ions
 10.1) Complex ion equilibrium (ligands replacement)
 10.2) Chelate effect
 10.3) Macrocyclic effect

11. Metal Complexes in Biological Systems

- 11.1) Hemoglobin
 11.2) Oxyhemoglobin and deoxyhemoglobin
 11.3) Toxicity of CO and CN in hemoglobin

Faculty Name: FACULTY OF APPLIED SCIENCES Start Year : 2020 © Copyright Universiti Teknologi MARA Review Year: 2018

Assessment Breakdown	%
Continuous Assessment	100.00%

Details of				
Continuous Assessment	Assessment Type	Assessment Description	% of Total Mark	CLO
	Quiz	Quiz	10%	CLO1
	Test	Mid-Term Test	30%	CLO2
	Test	Final Test	40%	CLO3
	Written Report	Lab Reports	20%	CLO4

Reading List	TOAL	Raymond Chang, Kenneth A. Goldsby, <i>Chemistry</i> [ISBN: 9789814599788] Silberberg, <i>General Chemistry</i> , 7th Ed. [ISBN: 978981464645]	
Article/Paper List	This Course does not have any article/paper resources		
Other References	This Course does not have any other resources		

Faculty Name : FACULTY OF APPLIED SCIENCES

© Copyright Universiti Teknologi MARA

Start Year : 2020

Review Year : 2018