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ABSTRACT 

In this study, the effect of praseodymium substitution at La-site on structural 
and electrical transport properties of La0.5Ba0.5MnO3 was investigated. 
Polycrystalline La0.5-xPr0.5x Ba0.5MnO3 (x = 0, 0.50, 1.00) were synthesized 
using a conventional solid-state method. The powder X-ray diffraction 
patterns show a single-phase orthorhombic distorted perovskite structure 
with space group Pnma. The Rietveld refinement analysis showed that 
the unit cell volume decreased as Pr3+ substitution increased which may 
be attributed to the different ionic radii of ions. Electrical resistivity 
measurements by using standard four-point probe resistivity measurement in 
a temperature range of 30 K to 300 K. As the Pr3+ concentration increases, 
metal-insulator transition, TMI decreases from 264K (x=0) to 157K (x=1.00) 
while resistivity increases from 1.16 Ω.cm (x = 0) to 20.3 Ω.cm (x =1.00).
The decreased TMI  are attributed to the decrease in tolerance factor which 
indicates enhancement in MnO6  octahedral distortion consequently 
reduce double exchange interaction. The electrical resistivity in the 
metallic region for all samples was fitted with the combination of domain/
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grain boundary, electron-electron, electron-magnon and electron-phonon 
scattering processes. The resistivity behaviour in the insulating region for 
all samples was attributed to small polaron hopping model which revealed 
that the activation energies increased as Pr3+ content increased due to the 
enhancement in the distortion of MnO6 octahedral.

Keywords: Manganese Perovskites; Scattering Model; Hoping Model; 
Lattice Distortion; Electrical Properties.

INTRODUCTION

Extensive research has been undertaken on manganites with the perovskite 
ABO3-type structure, specifically those doped with holes, and characterized 
by the general formula R1-xAxMnO3 (where R denotes rare earth elements 
and A represents alkali or alkaline elements). These materials showcase 
notable characteristics, including colossal magnetoresistance (CMR), a 
transition from ferromagnetic to paramagnetic states (FM-PM), and a shift 
from a metallic to an insulator state (MI)[1-5]. These distinctive properties 
emerge from the double-exchange (DE) interaction, which favors a 
ferromagnetic-metallic (FMM) state [5-6]. Conversely, the Jahn-Teller (JT) 
interaction, attributted to Mn3+ ions, encourages a paramagnetic insulating 
(PMI) behaviour [6]. To grasp the physical behaviour of doped manganites 
comprehensively, it is essential to take into account various additional 
factors, such as phase separation (PS) [7-8], superexchange (SE) interaction 
[9], Griffith phase (GP) [10-12], and charge ordering (CO) [8,13].

Correlation between electrical conduction and ferromagnetism in 
manganites arises from DE interaction where the oxygen mediate coupling 
of two Mn ions of different valence states between Mn spins [4, 5-7]. 
The magnetic behaviour in the case of doped manganites is due to two 
simultaneous transfer of two electrons; one from the Mn3+ (d4,t2g

3 eg
1, S=2) 

to 2p orbital of O2- while the other is from O2- to an empty eg orbital of 
Mn4+ (d3,t2g

3 eg
0, S=3/2). Consequently, it enables the eg electrons to move 

throughout the lattice. The DE interaction depends on the angle between Mn 
spins where it is strongly affected by structural parameters such as Mn-O-Mn 
bond angle. The transfer probability of the eg electron, to move from Mn3+ 

to neighbouring Mn4+  is, t= to cos (θ/2), θ being the angle between the Mn 
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spins. The transfer probability varies from 1 for θ = 0o to zero for θ = 180o. 
If the manganese spins are not parallel, the electron transfer will become 
more difficult and the mobility decrease [14-16]. In contrast, if manganese 
spins are parallel, the electrons transfers will be easier. Thus, the mechanism 
which leads to enhanced electrical conductivity requires a ferromagnetic 
coupling. This leads to simultaneous occurrence of ferromagnetism and 
metallicity in the material [17].  

Recent studies suggest that the observed behavior in these systems 
cannot be solely explained by double exchange. Factors such as the average 
size of A and B site cations, the mismatch effect, and the presence of 
vacancies in A and B sites play critical roles [18-26]. In doped rare earth 
manganites, the Mn3+/Mn4+ ratio significantly influences the compounds' 
physical properties, especially their transport properties. However, the 
precise nature of the DE mechanism, particularly in A-site substitution, 
remains unclear. It is proposed that substitution with different ionic radii of 
Pr3+ at the La-site may induce lattice distortion and impact the DE interaction. 
Although this substitution's effect has been reported in manganites, there are 
fewer reports on the formation of lattice distortion in La-based manganites.

This study investigates the impact of substituting Pr3+ at the                   
La-site on the structural and electrical transport characteristics of                         
La0.5-xPr0.5xBa0.5MnO3 (x = 0, 0.50, 1.00) manganite. The decrease in τ 
resulting from the substitution with the larger ionic radius of Pr3+  is examined 
to understand the mechanism behind the double exchange (DE) process. The 
alterations in resistivity behavior in both metallic and insulating regions due 
to Pr3+ doping are analyzed using scattering and polaron hopping models, 
respectively.

METHODOLOGY

Polycrystalline samples of La0.5-xPr0.5xBa0.5MnO3 (x = 0, 0.50, 1.00) 
were synthesized through the conventional solid-state method. High-purity 
(>99.99%) Pr6O11, La2O3, BaCO3, and MnO2 powders were precisely 
weighed in a stoichiometric ratio using an electronic balance for this study. 
After thorough mixing and grinding for 2 h, the powders were calcined in 
air at 950 °C for 24 h. Subsequently, the resulting powder was pressed into 
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pellets (diameter: 13 mm; thickness: approximately 3 mm) under a pressure 
of about 5 tonnes and sintered in air at 1200 °C for 36 h, followed by slow 
cooling at a rate of 1 °C/min to attain the desired oxygen stoichiometry.

The structural analysis of the samples was conducted using a 
PANanalytical model Xpert PRO MPD X-ray diffractometer with Cu-Kα      
(λ = 0.154 nm) radiation at room temperature. Data collection was performed 
in the 2θ range of 20 °- 90 °.

The electrical resistivity properties were examined utilizing the 
standard four-point probe technique over a temperature range of 30–300 K 
in a Janis model CCS 350ST cryostat under zero external magnetic fields. 
The resistivity behavior was scrutinized through theoretical scattering and 
hopping models.

RESULTS AND DISCUSSION

Figure 1 depicts (a) X-ray diffraction (XRD) spectra and (b) final refinement 
results for La0.5-xPr0.5xBa0.5MnO3 (x = 0, 0.50, 1.00) samples at room 
temperature. The patterns reveal that the peaks of all samples appear at 
comparable angles and positions, consistent with those previously reported 
for the parent compound, La0.5Ba0.5MnO3 manganite [16]. In Figure 1(a), 
the inset spectrum indicates a slight rightward shift in XRD peak intensity 
towards higher diffraction angles when Pr3+ is substituted. This shift is 
ascribed to the disparity in ionic radius between La3+ and Pr3+, causing 
distortion in the crystalline lattice, a phenomenon consistent with Bragg's 
equation [17]. This observation aligns with previous findings [17], indicating 
that a smaller ionic radius of the dopant compared to the host induces peak 
shifts towards higher diffraction positions due to lattice distortions.

The XRD data underwent refinement using the Rietveld method 
[27-28], utilizing the General Structure Analysis System (GSAS) program 
[29], the EXPGUI package, and VESTA [30]. Peak modelling involved a 
pseudo-Voigt function, and the refinement considered the cell parameter and 
background function. In Figure 1(b), the XRD patterns of the samples were 
refined again at room temperature, confirming that all synthesized samples 
were single-phased and exhibited orthorhombic symmetry with the Pnma 
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space group. This orthorhombic structure corresponds with prior studies 
on La0.5Ba0.5MnO3 manganites using the same refinement technique [15].

 
Figure 1(a) presents X-ray diffraction (XRD) spectra at room temperature for 
La0.5-xPr0.5xBa0.5MnO3 (x= 0, 0.50, 1.00) samples. The inset highlights a slightly 
rightward shift in the XRD spectra due to substitution, particularly noticeable 

in the position of the prominent peak. For Figure 1(b) displays the final 
refinement at room temperature for La0.5-xPr0.5xBa0.5MnO3 (x= 0, 0.50, 1.00) 

samples, which is the observed data (cross black), calculated data 
(continuous red line), the difference between observed and calculated data 

(blue line), and the positions of Bragg peaks  (vertical pink tick marks).
4 
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Table 1 presents the lattice parameters, calculated unit cell volume 
(V), and chi-squared (χ2) values resulting from the final refinement of                
La0.5-xPr0.5xBa0.5MnO3 (x = 0, 0.50, 1.00) samples. The structural parameter 
values for the x = 0 sample align with those previously reported [15] for 
the compound. The χ2 goodness-of-fit (GOF) indicator indicates a robust 
agreement between observed and calculated profiles, exemplified by the 
refinement quality shown in Figure 1(b). The calculated unit cell volume 
decreases for samples with Pr3+ substitution, ranging from 240.40 Å3                   

(x = 0) to 227.54 Å3 (x = 1.00). This slight reduction in unit cell volume 
implies the potential replacement of La3+ by Pr3+ in the crystal structure, 
attributable to the smaller ionic radius of Pr3+ (1.18 Å) [32] compared to 
that of La3+ (1.22 Å) [32].

Table 1: Structure parameters, unit cell volume, goodness of fit value for 
refinement and Jahn-Teller Variance of La0.5-xPr0.5xBa0.5MnO3 (x= 0, 0.50, 1.00) 

samples. The number in the brackets represents uncertainty of the last 
digit.

Sample x =0 x = 0.50 x = 1.00
Lattice parameter

a (Å) 5.5370(4) 5.5310(2) 5.5180(2)
b (Å) 7.8320(5) 7.8200(3) 7.8000(5)
c (Å) 5.5390(2) 5.5320(6) 5.5190(6)

Volume, V (Å3) 240.20(2) 239.23(5) 227.54(3)
Goodness of fit, χ2 1.0430 1.5500 1.5410

Jahn-Teller Variance, 
σJT

2(x10-5 Å2)
0.6130 0.6254 0.6305

Tolerance factor, τ 
(nm)

0.9341 0.9216 0.9195

The magnitude of MnO6 octahedral distortion was determined by 
calculating the variance in JT denoted by σ2

JT. This was achieved using 
Eq. (1) [33-34]:

                                                                                      
                (1)

Here, d(Mn-O) represents the individual M-O bond distance, and d<Mn-O> 
represents the average Mn-O bond distance. The calculated values of σ2

JT  
showed a increase for substituted sample.
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Further, to verify the structural stability of the samples, tolerance factor 
(τ) is calculated using Eq. (2) [33-34] which is given by:

                                                    (2)
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Figure 2: Resistivity versus Temperature Curves for La0.5-xPr0.5xBa0.5MnO3 
(x = 0, 0.50, 1.00)  under zero Magnetic Field.

Table 2: Metal-Insulator Transition Temperatures (TMI) and Resistivity (ρ) at 
TMI for La0.5-xPr0.5xBa0.5MnO3 (x= 0, 0.50, 1.00) samples under zero Magnetic 

Field.
Sample x =0 x= 0.50 x = 1.00
TMI (K) 264 214 157

ρ at  TMI (Ω.cm) 1.16 2.04 20.3

In order to understand the conduction mechanism involved in the 
resistivity behaviour of La0.5-xPr0.5xBa0.5MnO3 (x= 0, 0.50, 1.00) manganites 
in the metallic region (T<TMI), the resistivity data in the region under zero 
magnetic field (Figure 3) were fitted using Eq. (3) [32].

                                                               (3)
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Table 3: Fitted parameters obtained from fitting experimental data at low 
temperature in the metallic region and Activation energy, Ea obtained from 

SPH model fitting in the insulating region for La0.5-xPr0.5xBa0.5MnO3 
(x= 0, 0.50,1.00) samples.

Sample x =0 x = 0.50 x = 1.00
Metallic region (T < TMI)

ρ0 (Ω.cm) 0.0787 0.0827 1.5923
ρ2.5 (Ω.cm) 1.9218x10-6 4.7048 x10-6 4.5269 x10-5

Insulating region (T > TMI)
Activation Energy, 

Ea (meV)
60.2 139 198

Moreover, the conduction mechanism in the high-temperature 
insulating region of manganite can be clarified by examining hopping 
models. The resistivity data in this region is modelled using the Small 
Polaron Hopping (SPH) model.

Generally, the SPH model is employed to elucidate electron conduction 
at elevated temperatures, where the electron conduction is connected to 
thermal activation. At higher temperatures, the thermal energy is adequate 
to enable electrons to transition to their nearest neighbouring states. The 
expression for the SPH model is represented by Eq. (4) as follows [27-28]:

                                                                               (4)

The activation energy, Ea values for SPH increased with increasing 
Pr3+ substitution (Table 3), which may be related to the reduction of electron 
delocalization. The decreased delocalization is caused by enhancement of 
distortion in MnO6 octahedral, as indicated by the decrease in τ  (Table 1), 
which thereby decreased carrier hopping [27-28]. 
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Figure 4: Plot of ln (ρ/T) versus1000/T for La0.5-xPr0.5xBa0.5MnO3 (x= 0, 0.50, 1.00) 
Sample. The Solid Line Indicates the Best-Fit to the SPH Model

CONCLUSION

          In conclusion, this study investigated the impact of substituting Pr3+ 

at the La-site in La0.5-xPr0.5xBa0.5MnO3 (x = 0, 0.50, 1.00) samples on their 
structural and electrical transport properties, with a focus on understanding 
the influence of lattice distortion. The results indicated that the metal-
insulator transition (TMI) decreases as the concentration of Pr3+ increases. 
This reduction in TMI is linked to a decrease in the tolerance factor, signifying 
an enhancement in MnO6 octahedral distortion, ultimately leading to a 
decrease in double exchange interaction. The metallic region's electrical 
resistivity for all samples was analyzed using a combination of domain/
grain boundary, electron-electron, electron-magnon, and electron-phonon 
scattering processes. Additionally, the resistivity behavior in the insulating 
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CONCLUSION 

 
          In conclusion, this study investigated the impact of substituting Pr3+ at the La-site in La0.5-

xPr0.5xBa0.5MnO3 (x = 0, 0.50, 1.00) samples on their structural and electrical transport properties, with 
a focus on understanding the influence of lattice distortion. The results indicated that the metal-insulator 
transition (TMI) decreases as the concentration of Pr3+ increases. This reduction in TMI is linked to a 
decrease in the tolerance factor, signifying an enhancement in MnO6 octahedral distortion, ultimately 
leading to a decrease in double exchange interaction. The metallic region's electrical resistivity for all 
samples was analyzed using a combination of domain/grain boundary, electron-electron, electron-
magnon, and electron-phonon scattering processes. Additionally, the resistivity behavior in the 
insulating region for all samples was attributed to the small polaron hopping model, revealing that 
activation energies increased with higher Pr3+ content due to the intensified distortion of MnO6 
octahedral structures. 
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