UNIVERSITI TEKNOLOGI MARA

DESIGN OF COMPACT RECONFIGURABLE MICROSTRIP UWB FILTENNA STRUCTURE WITH WIMAX AND WLAN BAND REJECTION

NURFARAHIN BINTI MISWADI

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Electrical Engineering)

Faculty of Electrical Engineering

January 2019

ABSTRACT

Since the allocation of 3.1 - 10.6 GHz band by the Federal Communications Commission (FCC), UWB system has a rapidly progressive development. They are highly demanded in various applications including wideband, multi-functional and high data devices. However, there are some existing narrowband system within UWB spectrum, which cause electromagnetic interference (EMI) and leads to the degradation performance of UWB operation. The research described in this thesis focuses on the concept of the reconfigurable UWB antenna with band rejection characteristics to mitigate the electromagnetic interference between UWB and narrowband communication. By embedding ideal switch in the band rejection element frequency reconfigurability can be achieved. In this thesis, three designs of reconfigurable UWB antenna with band rejection were proposed; namely a reconfigurable UWB antenna with WiMAX band rejection (rUWB-WiMAX), reconfigurable UWB antenna with WLAN band rejection (rUWB-WLAN) and reconfigurable UWB antenna with dual band rejection (rUWB-DBR). The rUWB-WiMAX have impedance bandwidth from 2.99 GHz to 10.58 GHz with band rejection at 3.52GHz by utilizing C-shaped parasitic stripline. Meanwhile, rUWB-WLAN achieved an operating bandwidth from 2.99 -10.82GHz with VSWR less than 2 except for the WLAN band operating at 4.92 - 5.84GHz. Dual band rejection with central frequencies of 3.56GHz and 5.52GHz have been generated by integrating both of the band rejection elements from the previous design into one module for the rUWB-DBR. The proposed rUWB-DBR can operate at four modes by configuring the switches ON and OFF. The antenna exhibit omnidirectional radiation pattern and stable gain across the band except the two rejected frequencies. The simulated and measured result were presented and compared to demonstrate the performance of the proposed antennas.

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious the Most Merciful

Alhamdulillah all praise to Allah, for the strength and His blessing to complete my study. This research would not be completed without the help of many parties. I would like to take this opportunity to thank and express my appreciation to all of them.

First of all, I would like to express my sincere gratitude and indebtedness to my supervisor, Assoc.Prof.Dr.Mohd Tarmizi bin Ali, for this excellent guidance, constant support and his continuous encouragement throughout the course of this thesis.

I would like to thank and appreciate my colleagues in Antenna Research Center (ARC) for helped in understanding simulation and measurement process throughout this research. This would not be accomplished their help, encouragement and suggestion.

Next, I would like to give my deepest appreciation and gratitude from bottom of my heart to my husband Muhammad Shamil Bin Azni for being patient and supportive and to my parents Miswadi Bin Nadimon, **Constant Support**, and my family members for their constant support, love, encouragement and endless help. Last but not least, I would like to thank all our friends who were involved directly or indirectly in successful completion of the present work.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	\mathbf{V}
TABLE OF CONTENTS	vi
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF SYMBOLS	xvii
LIST OF ABBREVIATION	xviii
CHAPTER ONE : INTRODUCTION	1

CHAPTER TWO : LITERATURE REVIEW		7
1.5	Thesis Organization	6
1.4	Scope And Limitation Of Work	5
1.3	Objectives Of The Research	4
1.2	Problem Statement	3
1.1	Research Background	1

2.1	Introduction	7
2.2	Ultra-Wideband Technology	8
	2.2.1 Introduction of UWB Technology	8
	2.2.2 Advantages of UWB Technology	9
	2.2.3 UWB Applications	10
	2.2.4 Interference between UWB and Narrowband Communication	12
	System	
	2.2.5 UWB Antenna Specifications	13
2.3	Band Rejection Characteristics	13
	2.3.1 Etching Slot	14

2.3.2 Split Ring Resonators (SRR) and Complementary SRR	16
(CSRR)	
2.3.3 Parasitic Elements	19
2.4 Reconfigurable Antenna	20
2.4.1 Reconfigurable UWB Antenna with Band Rejection	22
Characteristics	
2.5 Summary	24
CHAPTER THREE : METHODOLOGY	25
3.1 Introduction	25
3.2 Flowchart Of Reconfigurable UWB Antenna With Band Rejection	26
3.3 Parameters And Specification For Antenna Design	29
3.4 The Technique Of Band-Rejection	29
3.4.1 Concept Of Parasitic Elements	29
3.4.2 Concept Of Etching Slot	31
3.5 The Concept Of The Reconfigurable Antenna	33
3.6 Simulation And Measurement Tools	34
3.6.1 Computer Simulation Technology (CST)	35
3.6.2 Vector Network Analyzer (VNA)	35
3.6.3 Anechoic Chamber	37
3.7 Fabrication Process Using LPKF	38
3.8 Design Of Ultra-Wideband Antenna (Reference Antenna)	39
3.8.1 Parametric Analysis	40
3.8.1.1 Shape Of The Radiating Patch	40
3.8.1.2 Modified Ground Plane	41
3.8.1.3 Radius Of The Radiating Patch, r	44
3.8.1.4 Length Of The Ground Plane, Lg	45
3.8.2 Results And Discussion	46
3.8.2.1 Antenna Return Loss, S11 (dB)	47
3.8.2.2 Antenna Gain And Efficiency	48
3.8.2.3 Surface Current Distribution	49
3.8.2.4 Radiation Pattern	50
3.9 Summary	52