UNIVERSITI TEKNOLOGI MARA

FAULTY DETECTION ON BROADCASTING EQUIPMENT USING THERMAL INFRARED IMAGING APPROACH

MOHD RIZMAN BIN SULTAN MOHD

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Electrical Engineering)

Faculty of Electrical Engineering

November 2019

ABSTRACT

Thermal infrared is a non-invasive method for sensing temperature on specific time frame of its region of interest. It had been widely used as faulty detection on many applications including electrical transmission grid and electronics board. Broadcasting equipment operates 24-hours per day and yet sensing the faulty on fully functional equipment requires a non-invasive method. Broadcasting equipment separated into two; studio site and transmission site. Radio broadcasting equipment in studio sites has five main stages. This research has focused on the equipment inside the on-air studio. The broadcasting equipment in the studio is further classified into several section and sub-section. Acquiring thermal infrared images requires image processing method. Since the thermal infrared camera captures thermal images in grey-scale images, it must be converted into pseudo-coloured images for hot spot detection. Before conversion take place, raw thermal images must be processed for a noise cancellation process called histogram equalization method. This method used to adjust the histogram level of thermal images to enhance its quality. These converted pseudocoloured thermal images then processed in image segmentation method. The thermal images separated and segregated into its own cluster based on the L*a*b colour space. This segmentation applies to differentiate the focus point from the whole images to ease the faulty detection. This study presents various method of image segmentation for pseudo-coloured thermal images. Based on the result, it is shown that k-means clustering had given the best evaluation measurement of PSNR, MSE and SSIM compared with fuzzy c-means clustering. This image processing method performed in MATLAB R2015a software and average time to execute is less than 1 seconds.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my Master and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisors Dr. Sukreen Hana Herman, and co-supervisor, Dr. Zaiton Shariff. Thank you for the support, patience and ideas in assisting me with this project.

I also would like to express my gratitude to the staff of Jabatan Penyiaran Malaysia Negeri Perak, especially, Mrs. Nor'ain Bakir, Mr. Mohamad Ariff Ismail and Mr. Mohd Zulbairi Ghazali for providing the facilities, knowledge and assistance. Special thanks to my colleagues and friends for helping me with this research.

Finally, this thesis is dedicated to my wife and both of my parents for the vision and determination to educate me. This piece of victory is dedicated to you. Alhamdulillah.

TABLE OF CONTENTS

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xii

CHAPTER ONE: INTRODUCTION

1.1	Research Background	1
1.2	Problem Statement	6
1.3	Objectives	6
1.4	Scope of Research	7
1.5	Significance of Research	7

CHAPTER TWO: LITERATURE REVIEW

2.1	Introdu	ction	8
2.2	Radio Broadcasting System		
2.3	Thermal Infrared Imaging		13
	2.3.1	Thermal Infrared System Approach	16
2.4	Image	Processing Method for Thermogram	17
	2.4.1	Image Enhancement using Histogram Equalization	18
	2.4.2	Image Segmentation	21
2.5	Hardwa	are Setup for Thermal Infrared Image Acquisition	27
	2.5.1	A Micro-controller Approaches	27
	2.5.2	Available Portable Thermal Infrared Camera	30
2.6	MATL	AB R2015a Image Processing Software	32

CHAPTER THREE: METHODOLOGY

3.1	Introdu	ction	33	
3.2	Flowch	Flowchart of Proposed Method		
	3.2.1	Image Acquisition	34	
	3.2.2	The Implementation of Histogram Equalization	35	
	3.2.3	Image Conversion to Pseudo-coloured Image	38	
	3.2.4	The Implementation of Image Clustering	39	
3.3	Perform	Performance Analysis		
	3.3.1	PSNR and MSE	46	
	3.3.2	SSIM	46	
СНА	PTER FO	OUR: RESULTS AND DISCUSSIONS		
4.1	Introdu	ction	48	
4.2	Results	from Image Processing Method	48	
4.3	Perform	nance Analysis Results	58	
4.4	Discuss	sions	61	
СНА	PTER FI	IVE: CONCLUSION AND RECOMMENDATIONS	62	
REFI	ERENCE	CS	64	
APPI	ENDICE	S	72	
AUT	HOR'S P	PROFILE	80	