UNIVERSITI TEKNOLOGI MARA

UNSYMMETRICAL DIETHYLENETRIAMINE FLUORESCENT CHEMOSENSORS FOR SELECTIVE RECOGNITION OF Fe(III) AND Zn(II)

SITI NUR AIN BINTI MOHD ADNAN

Thesis submitted in fullfillment of the requirements for the degree of **Master of Science**

Faculty of Applied Sciences

October 2019

ABSTRACT

Fluorescent chemosensor have significant role in medical, environmental and biological applications. Receptor and signaling unit are important aspect in designing fluorescent chemosensor to selectively recognize metal ions for practical applications. In this study a series of chemosensors were synthesized for metal ions which bears diethylenetriamine and benzenyl derivatives as the receptor and dimethyl-phenylamine as fluorescence signal. Eight synthesized unsymmetrical ligands were prepared by using Schiff base technique that involved condensation of primary amine (-NH₂) with an aldehyde (HC=O) to produce azomethine group (RCH=NR). All ligands were fully characterized by Fourier Transform Infrared (FT-IR), Proton Nuclear Magnetic Resonance (¹H-NMR) and elemental analysis (CHNS). All ligands shown the characteristic FT-IR peak for C=N at 1596-1639 cm⁻¹ and the ¹H-NMR signal for HC=N at 8.11-8.51 ppm confirmed the formation of Schiff base ligand. Sensing properties for six synthesized ligands N-(4-Dimethylamino-benzylidene)-N'-{2-[(3nitro-benzylidene)-amino]-ethyl}-ethane-1,2-diamine (L1), N-(4-Dimethylaminobenzylidene)-N'-{2-[(4-nitro-benzylidene)-amino]-ethyl}-ethane-1,2-diamine (L2), 3-[(2-{2-[(4-Dimethylamino-benzylidene)-amino]-ethylamino}-ethylimino)-methyl]phenol (L3), 4-[(2-{2-[(4-Dimethylamino-benzylidene)-amino]-ethylamino}ethylimino)-methyl]-phenol (L4), N-(4-Dimethylamino-benzylidene)-N'-{2-[(pyridin-2-ylmethylene)-amino]-ethyl}-ethane-1,2-diamine (L5) and synthesis of N-(4-Dimethylamino-benzylidene)-N'-{2-[(pyridin-3-ylmethylene)-amino]-ethyl}-ethane-1,2-diamine (L6) were studied towards transition metal. The selectivity and sensitivity tests of ligands were conducted on several metal ions. The fluorescence measurements revealed that L5 was more selective towards Zn^{2+} while L1-L6 were selective towards Fe³⁺ ions and forms complexes in 1:1 ratio as evidenced by Job's plot analysis. The limit of detection for L5 was found to be 3.5×10^{-5} M and L1-L6 were 1.42×10^{-6} M, 3.76×10^{-6} M, 1.58×10^{-6} M, 5.37×10^{-6} M and 6.49×10^{-6} M respectively. These sensors also exhibit a very good fluorescence sensing ability towards Zn^{2+} and Fe^{3+} at pH 7.0. Therefore, this fluorescent sensor can be applied to monitor the presence of heavy metals both in environment and biology conditions.

ACKNOWLEDGEMENTS

In the name of Allah gracious and most merciful. Alhamdulillah. Thanks to Allah s.w.t, whom His willing giving me the strength and opportunity to complete my research within the period of time given.

First and foremost, I would like to express my utmost gratitude to my supervisor, Dr Sharizal Bin Hasan, for his encouragement, valuable advices, guidance and helping me throughout the research project. In addition, he was always accessible and willing to help his students with their study and research. He also allows me to attend conferences in Indonesia and Korea. Also thank him inviting me to enjoy lunch and dinner at his house for several times. I am also grateful to my co-supervisor, Pn. Salamiah Binti Zakaria for giving some advices in improving my work.

I would like to express my sincere appreciation to the Ministry of Higher Education of Malaysia for providing generous financial support under the research grant RAGS UiTM 5/3/RAGS/(2/2013) and Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns) UiTM Kampus Puncak Alam for the NMR facility.

Special thanks are given to all the laboratory staffs and academic staffs for their help and support in this research project. Not to forget my special thanks to my friends Siti Nurwajihah Binti Mohd Salleh, Nur Izzati Binti Mohd Anuar, Wan Zuliana Binti Wan Zulkifli and Nurul Asma Binti Hamedan who giving me support in terms of motivation, knowledge and information in this project. Three years' life at Arau will definitely be the most precious memory in my life. I will never forget the beautiful memories and the difficulty that we shared together. They have given me excellent friendship for long time.

Lastly but certainly not least, I would like to thank my parents Mohd Adnan Bin Muhammad and for their constant love and support. An honourable and appreciation mention goes to my beloved siblings who always give me a moral support and encouragement. This accomplishment would not have been possible without them. Thank you once again.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	x
LIST OF ABBREVIATIONS	xii

CHAPTER ONE: INTRODUCTION			1	
1.1	Resea	Research Background		
1.2	Proble	em Statement	3	
1.3	Objectives			
1.4	Significance of Study			
1.5	Scope	5		
CHA	PTER	TWO: LITERATURE REVIEW	7	
2.1	Detec	7		
	2.1.1	Zinc	8	
	2.1.2	Iron	9	
2.2 Chemosensor		10		
	2.2.1	Host-Guest	11	
	2.2.2	Fluorescence Chemosensor	13	
	2.2.3	Colorimetric Chemosensor	19	
2.3	Princi	20		
	2.3.1	Photoinduced Electron Transfer	20	
	2.3.2	Fluorescence Resonance Energy Transfer (Fret)	22	
	2.3.3	Excimer Formation	22	

CHAPTER ONE INTRODUCTION

1.1 Research Background

Chemical sensor is a device converting chemical information into physical recordable signal. The term chemosensor is defined as a molecule of abiotic origin that is able to bind with the presence change in the property of the system, such as redox potentials and absorption or luminescence spectra. The need for chemosensors nowadays is very evident, many efforts are devoted to the synthesis and a huge number of papers have been published [1],[2].

Generally, there are three different approaches in designing chemosensors which are: a) binding site-signalling approach b) displacement approach c) chemodosimeter approach. At the "binding site-signalling subunit" approach, the two parts are linked through a covalent bond. The interaction of the analyte with the binding site caused changes in the electronic properties of the signalling subunit, resulting sensing of the target anion.

The displacement approach is involves the displacement of the cation from the coordination sphere of the receptor upon the addition of a particular anion due to the strong affinity of anion for the metal ion, thereby reviving the optical signature of the free host [7]. In the chemodosimeter approach involves the use of specific chemical reactions upon binding with anions, which results in an optical signal [8]. The displacement approach is most popular approach involves covalently introducing binding sites and signaling subunits to the chemosensors.

In the last few years, great attention has been paid to fluorescent chemosensors and many new systems were synthesized [9]. Fluorescent chemosensor composed of two parts which are a receptor (recognition element) responsible for the molecular recognition of the analyte and a fluorophore (fluorescence reporter) which responsible of signaling the recognition event. Both are connected through a spacer or also known as a linker [10]. The basic concept of chemosensing is outlined in Figure 1.1. A receptor is connected to a fluorophore by a spacer, and when the targeted metal species is bound, the photophysical characteristic of the fluorophore (such as