UNIVERSITI TEKNOLOGI MARA

BCM462: STRUCTURES II

Course Name (English)	STRUCTURES II APPROVED
Course Code	BCM462
MQF Credit 2 Course Description This course is a continuation of Structure 1. This topic encompass the properties of soil, the design of foundation and simple beams of various materials, and the design of gravity retaining wall structures Transferable Skills Problem-solving skill Teaching Methodologies Lectures, Tutorial (

CLO	CLO1 Evaluate Structural design for Timber Beam, Steel Beam and Reinforced Concrete Column CLO2 Define the principal of Structural design for Timber Beam CLO3 Define the Principal of Structural Design for Steel Beam and Reinforced Concrete Column CLO4 Demonstrate the knowledge on the Structural Design

| Pre-Requisite
 Courses |
| :--- | :--- |
| Topics
 1. Classification and identification of soil
 1.1) n/a
 2. Foundation Design
 2.1) To analyses suitable sizes of shallow foundations
 2.2) Base pressures
 2.3) Uplift and how to avoid it
 3. Simple Beam Design (Timber)
 3.1) Using formula MR = fl/y to design timber beam
 3.2) Principle of Modular of Section Z = bd2/6
 4. Simple Beam Design (Steel)
 4.1) Using Universal Beam Design Table to obtain size of beam and mass (UB)
 4.2) Comment on the different sizes according to the weight
 5. Simple Beam Design (Reinforced Concrete)
 5.1) Using area of concrete and area of steel to find the number of
 5.2) reinforcement
 6. Euler's Theorem for Axially Loaded Column
 6.1) Design factors
 6.2) Slenderness ratio
 6.3) Effective length of columns
 7. Gravity Retaining Wall Design
 7.1) Effect of horizontal forces due to wind and water
 7.2) Effect of horizontal forces due to granular material
 7.3) Effect or surcharge
 7.4) Pressure under the wall
 7.5) Check factor of safety
 7.6) Uplift
 7.7) Sliding
 7.8) Overturning
 7.9) Soil bearing capacity | (

Assessment Breakdown	$\%$
Continuous Assessment	40.00%
Final Assessment	60.00%

Details of Continuous Assessment	Assessment Type	Assessment Description	\% of Total Mark	CLO
	Assignment	Tutorial for all topics	30%	CLO4
	Test	Test 1 for Timber Beam Design	5%	CLO2
Test	Test 2 - Steel Beam Design and Reinforced Concrete Column	5%	CLO3	

Reading List	Recommended Text	Vine, G. B 2003, Structural Analysis, Longman Shaefer, R. E 2002, Elementary Analysis and Design, Prentice-Hall William, D.T., Morgan, W. \& Durka, T 2006, Structural Mechanics, 6th Ed., Pittman Whitlow, R 1973, Material and Structures, Longman
Article/Paper List	This Course does not have any article/paper resources	
Other References	This Course does not have any other resources	

