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ABSTRACT 

 

Various devices are used in the medical world to measure grip force. However, 

there is no well-defined method being used to quantify the distribution of grip 

forces applied by post-stroke patients. It is important to track the patient's 

progress in neurofeedback training throughout rehabilitation with quantitative 

evaluation. A palm gripper measurement device is being developed, equipped 

with Force Sensing Resistors (FSRs) (RP-S40-ST model) to capture grip force. 

The device provides valuable insights into rehabilitation progress by assessing 

the grip force. The analogue value from FSRs is linearly interpolated from the 

input range to the output range using the map function; 'map(avg_force, 0, 

1023, 0, 15)' to scale the 'fsrReading' from the input range of 0 to 1023. The 

input range is converted into a score 0 to 15 scale of a bar graph to indicate 

the amount of force measured. The accuracy showed by Pearson’s r shows a 

correlation trend between the analogue value and length of the bar graph with 

0.97651 and 0.98083, respectively. A matrix was plotted for three subjects with 

different object sizes for device testing which shows the adjusted R2 is 0.955 

highest for big objects and the lowest adjusted R2 is 0.63672 for small objects.  
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Introduction 
 

In conventional practice, rehabilitation physicians and therapists employ 

dynamometric devices as a supported method for evaluating grip strength 

progress, in tandem with the utilization of the Medical Research Council 

(MRC) scores depicted in Figure 1 for muscle strength grading. The strength 

testing is categorized into levels zero (0) until five (5). The assessment of the 

MRC scale requires the expertise of trained medical and therapist 

professionals, and currently, there are no available devices capable of 

measuring it. The MRC scale serves as a tool for medical evaluation rather 

than a motivational aid for patients. It quantifies distinct movements like elbow 

flexion and wrist extension, while grip activity involves a complex 

combination of these specific motions. For example, gripping a cylindrical 

object involves 2 to 5-finger flexion plus thumb abduction and flexion. 

Altogether 6 trick movements. All these movements are measured as a sum 

score in the MRC scale as shown in Figure 1. Consequently, grasping the 

nuances of the MRC scale exceeds the capacity of most patients.  

Visual indicators used to monitor the rehabilitation progress are 

potentially more efficient for a post-stroke patient [1]. A good example would 

be having a device that can indicate the progress of the post-stroke patient 

during rehabilitation training with a Graphical User Interphase (GUI) to 

monitor their progress. The basis theory for conventional and modern practices 

for post-stroke rehabilitation is neuro feedback training which requires 

constant repetitive movement to build muscle memory which will improve 

neuroplasticity. The motivation behind repetitive movements can be 

heightened when patients can monitor their progress through a straightforward 

interactive system or devices. 

Many researchers have studied the constraints of conventional assisted 

measurement devices utilized for muscle grade measurement, as outlined in 

Table 1. Most of these devices lack the capability for progress monitoring to 

effectively support patients’ motivation. 
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Figure 1: Table of MRC assessment score muscle strength grading [2] 

 

Table 1: Devices used in measuring muscle strength together with the MRC 

scale 

 
Title Device Research work Limitation 

Linking prioritized 

occupational 

performance in 

patients [3]. 

Hand- 

dynamometer 

A hand dynamometer 

was used to test the 

maximum handgrip 

strength. The maximum 

value of three tries. 

Cannot be used 

by therapist to 

check progress of 

patients from 

home. 

Not IOT-based. 

Recovered grasp 

performance after 

stroke depends on 

interhemispheric 

frontoparietal 

connectivity [4]. 

Martin- 

vigorimeter 

A rubber ball vigorimeter 

measured maximal grip 

strength from medical 

records within the first 

four days after stroke. 

Not IOT-based. 

 

Suitable to focus 

on Ball grip 

Customized manual 

muscle 

testing for post-

stroke upper 

extremity 

assessment [5] 

Electronic 

handheld 

Manual Muscle 

Tester (MMT) 

Modified electronic 

manual muscle tester for 

CFA analysis with 

structural equation 

modelling of UE manual 

muscle testing. 

Expensive 

 

Possible use of 

IOT 

 

A regular dynamometer is a cheap option for measuring the amount of 

force for a palm grip during the rehabilitation process. However, it lacks the 

capability to measure objects with different shapes such as cylindrical, 

rectangles etc. The methodology used was suitable for the device data 

validation. Another optional device is the Martin Vigorimeter which also be 

used to identify the rehabilitation progress of post-stroke patients. However, it 

is an analogue device and absences the potential of having IoT features. 
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Moreover, the Vigorimeter focuses more on one type of grip known as the ball 

grip. A more advanced option is the electronic handheld Manual Muscle Tester 

(MMT) to measure grip force, usually used by therapists to measure passive 

grip. With additional cost, the device could accommodate IoT features if 

needed. The MMT is versatile in representing rehabilitation results for various 

upper spasticity movements for post-stroke patients. A more targeted approach 

was to conduct rehabilitation using MMT by creating or adding a scoring 

system for an added value in post-stroke rehabilitation [6]. 

Additionally, dynamometric testing is also found ineffective for weak 

muscles when movement against resistance is impossible, frequently related to 

the case of peripheral nerve injuries [7]. This period is important to identify 

nerve regeneration for rehabilitation purposes. Few researchers have also 

discussed the dependability and validity of the MRC grading scale regarding 

peripheral nerve disorders [7]-[8]. In addition, the MRC scale does not 

consider the Range of Motion (ROM) for which a movement may be 

performed, nor does it describe the level of resistance against which a 

movement can be performed [7], [9]. 

This paper explores the potential enhancement of the MRC scale 

through the integration of a supplementary device alongside traditional 

measurement tools. The device aims to motivate patients by enabling them to 

monitor their rehabilitation progress. It is achieved through IoT features that 

measure muscle strength focusing on gripping activity applying 15 unitless 

scale using embedded programming. The 15-unitless scale design of the device 

is not related to the MRC scale as it measures trick measurement, a 

combination of a few specific movements, rather than MRC-specific 

movements.  

The measurement device implements a distributed force application 

between two sensors for better gripping surfaces and different shapes. The 

muscle strength grading is displayed on the LCD panel and quantitatively 

measured. The sensitivity of the FSR is set to 10K Ω resistance for a more 

controlled sensitivity[10]-[11]. 

 

 
System Fabrication 

 

The measurement device is built with a force resistive resistor, and a pressure 

film sensor RP-S40-ST models and both sensors are configured using Arduino 

embedded programming. The force sensor was built in a parallel circuit to read 

the applied force (or grip) while simultaneously integrating the readings.  

Figures 2 and 3 show the schematic diagram and the prototype.  

The device is built with a Velcro strap to be attached to the object of 

interest as shown in Figure 4. Patients are required to grip and lift the object 

and the force applied to grip the object is mapped to 15 scale and represented 

in a bar graph at LCD panel. 
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The objective of the rehabilitation session is to be able to grip and lift 

the object. The 15 scale is not related to any mass unit. It is a utility function 

that enables scaling or mapping a number from one range to another. It accepts 

an input value, maps it to a new range, and returns the mapped value. The 

function interpolates the input value from the input range to the output range 

in a linear fashion. A combined method of mapping both sensors helps to 

integrate sensors in the system. Therefore, to achieve linearity in readings, the 

device calibrates the sensitivity of the sensor’s analogue value and scale as an 

output of increasing and decreasing value on the 16 x 2 LCD panel display.  

 

 
 

Figure 2: Schematic diagram drawn using circuito.io  
 

 
 

Figure 3: Device anatomy for palm gripper device 
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It adjusts the analogue value by averaging the input data from both 

sensors to enable values that span from 0 to 1023 (the analogue input range), 

to a number that corresponds to the length of the force bar on the LCD, which 

varies from 0 to 15. Figure 5 shows how to use the measurement device. 

 

 
 

Figure 4: Full device layout for experimentation 

 

 
 

Figure 5: Experimentation for subject's grip force 

 

 

System Evaluation 
 

FSR coefficient and reliability 
The altering and aligning process of the device's output to match a recognised 

standard or reference was conducted. The FSR sensors had a logarithmic 

growth relation between the mass and the amount of force exerted during 

gripping on the surface of the FSRs. From the device, the average analogue 

value between the two FSR sensors was considered to map into 15 scales in 

linear relation. The analogue reading was compared to the length of the bar 

graph over a mass increment of 10 g. 

Power 

Supply 

Device’s 

LCD 

Indicator 

Velcro 

FSRs 
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The programming aims to create a scale to represent the amount of force 

applied to the FSR in a definitive way. Although the analogue value may vary 

with the repeatability of the experiment, the variations are not significant. 

Figure 6 illustrates the programming flow with a map function to measure the 

linear correlation between increasing weight (g) with the analogue reading and 

unitless 15 scale of the LCD bar. The maximum analogue value for a 5V 

Arduino Uno-R3 is 0 – 1023 and the maximum length of bar score using a 16 

x 2 LCD Panel is programmed for a 15 scale.  

Table 2 shows the results between the mass of 10 g to 80 g with the 

average analogue value and bar length score. Both analogue reading and bar 

score show high correlation with the increasing weights and Table 3 shows 

Pearson correlation coefficient r was 0.97 and 0.98, respectively. 

However, using the independent variables, the model is unable to 

reliably predict or estimate the values of the dependent variable [12]. To put it 

another way, the model is incapable of accurately capturing or accounting for 

the linear relations between the variables. Therefore, the results suggest that 

the system can compensate for the average error of output from both FSRs. 

The FSR is not able to provide precise force value but is capable of estimating 

the linear relation of the bar score and the force applied to the pressure films. 

The objective of using 15 unitless scales is to measure the progress of 

the rehabilitation session for patients. Each patient’s progress depends on the 

object shapes and grip position at the object (i.e., near the centre of mass, edge, 

etc.) and is not measured by the weight of the objects. Therefore, it is important 

to not use any scale comparison for the 15-unit scale introduced in the device. 

Table 4, in the context of linear regression, suggests that the intercept 

value indicates that the projected value of the FSR's average analogue reading 

is 67 when the weight is zero. The estimated uncertainty or variability is shown 

by the 36.5 standard error. Put practically, this indicates that, with a 95% 

confidence level, the actual value of the average analogue reading may differ 

by around 36.5 units from the expected value. 

Similarly, the intercept value of 0.5 suggests that when the weight is 

zero, the predicted value of the bar length score is 0.5. The standard error of 

0.64 indicates the variability or uncertainty associated with this estimate. In 

this case, the actual value of the bar length score could deviate from the 

predicted value by around 0.64 units, with 95% confidence.  

However, the adjusted R-square value indicates that the model may be 

too simple (underfitting) for the data, leading to poor performance. Still, a 

small standard error of slope indicates a more precise estimate and strengthens 

the evidence for a significant relationship between the bivariate. Therefore, 

opening the possibility for further study to develop a mathematical model for 

a more robust control algorithm.  

Implementing a robust control algorithm based on a linear regression 

model may be one of the solutions to mitigate the variability and analogue data 

fluctuation from the sensor [13]. Nonetheless, the uncertainty of the system 
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such as advanced mathematical modelling, external disturbances, dynamic 

changes, and human factors needs to be addressed properly. 

 

 
 

Figure 6: Coding flowchart for palm gripper device 
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Table 2: Data of average analogue reading of sensor and length of the graph 

with weight 

 

Weight (g) Bar length score Analogue reading 

10 1 140 
20 3 240 
30 6 430 
40 7 498 
50 7 560 
60 9 634 
70 10 690 
80 11 720 

 

Table 3: Statistical analysis of analogue reading and bar length score 

 

 Average analogue reading Bar length score 

Number of points 9 9 
Degrees of freedom 7 7 
Residual sum of squares 258.00899 4.13298 
Pearson’s r 0.97651 0.98083 

 

Table 4: Summary analysis of the relationship between analogue reading and 

bar length score 

 

 

Intercept Slope Statistics 

Value 
Standard 

error 
Value Standard 

error 

Adj. R-

square 
Average 

analogue reading 
67.32221 36.54101 9.26055 0.77188 0 

Bar length score 0.52059 0.64135 0.13785 0.01346 0 

 
 

Different shapes evaluation 
 

Weight and analogue readings are used for guidance in designing the bar graph 

to get a trendline in a laboratory scale calibration. However, the actual gripping 

or pinching process in rehabilitation sessions is not related to weight only. 

Other parameters involved during the process are gravity, friction force, centre 

of mass and surface area. All these parameters are important but not significant 

in measuring patients’ rehabilitation progress. 

Palm grips involve numerous forms of grabbing or holding techniques 

that are utilised in various activities or disciplines. For device experimentation, 

several objects were lifted without limiting to one gripping style for each object 

while trying to get as much surface area involved. The objects were divided 
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into two categories big and small and tested with three healthy subjects with 

no medical issues in hand muscle or joint. The demographic of the subjects is 

shown in Table 5. The score of each subject represents the length of the 15-

score bar graph. 

Table 6 shows an example of a holding technique for big and small 

categories. A scatter plot matrix was utilised to depict bivariate connections 

between variable combinations of two object classifications and the score of 

each subject from Table 6. Each scatter plot in the matrix depicts the link 

between two variables, to investigate several associations in a single graphic 

[14]. There are many ways to express the degree of variability or error that may 

be anticipated in the results of the device used to evaluate palm grip for post-

stroke rehabilitation. The Standard Error of Measuring (SEM) was used to 

validate the results. Any method is valid if it provides a rough estimate of the 

possible discrepancy between a person's observed score and true score because 

of factors including measurement uncertainty, performance variability, and 

additional sources of error [15]. 

Table 7 categorises the 10 specific objects into two main categories 

which are big and small objects. These classifications were made to observe 

the variations of bar length score between two different categories of objects 

in terms of size. The variations in the bar length were further observed by the 

inclusion of three subjects in the same age group. A set of matrix plots was 

established to understand the direction and strength of correlations between 

variables by visually examining the scatter plots derived from Table 7. 
 

Table 5: Subject demographic information 

 

Name Gender Age 

Subject 1 Female 23 
Subject 2 Male 23 

Subject 3 Male 25 

 

For each scatter plot matrix of the classified big and small object, the 

Adjusted R2 was calculated and obtained using Origin 2023b. The adjusted R2 

determines the proportion of variance in the score of each subject. A model 

with a value of 1 completely predicts the score values of each subject. A 

number less than or equal to 0 indicates that the model has no predictive value. 

That said, all the calculated adjusted R2 from Figures 7 and 8 suggest that the 

model can be predicted for different subject scores. Results for big objects 

show an Adjusted R2 closer to 1 compared to small objects which shows a 

lower R2 value which indicates that bigger objects for palm grip are more 

precise to draw a linear correlation for each subject. Furthermore, the scatter 

plot matrix patterns show a positive correlation for both categories. This 

signifies that as one variable rises, the other tends to rise as well [12], [14]. 
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Table 6: Example of objects gripping position and sizes 

Objects Big Small 

Knife 

  

Book 

  

Mug 

  

Box 

  
 

On the other hand, Pearson’s r was also calculated for both categories. 

The correlation coefficient is a statistic that quantifies the degree and direction 

of a linear link between each subject and the gripping score. As the calculated 

R2 and Adjusted R2 suggest the positive linearity of the correlation, Pearson's r 

will consider the strength and direction of linear correlations. From the results, 

the highest value for adjusted R2 is 0.7841 and the lowest value 0.63672 clearly 

shows minimal difference in subject score comparison. The difference in the 

r-value may occur because of gender differences between subjects. However, 

a positive value of r indicates that as one variable increases, the other variable 

tends to increase as well and is in line with the interpretation values of R2 and 

Adjusted R2 [12]. Pearson’s r for small objects shows a weaker positive linear 

relationship compared to big objects thus implying that smaller objects have 

less accuracy for the grip score of each subject[14], [16]. 

Based on the palm grip force comparison between small objects and big 

objects, it can clearly see a difference in p-values for every subject although 
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the difference is small. The outcomes may differ depending on the heart rate, 

sleep, and other activities done by the subject prior to the data being assessed. 

Nonetheless, the methodologies used were accurate and reliable [15], [17]. 

However, the repeatability of the experiment can be achieved with a minor 

inaccuracy [6], [18]. 

 
Table 7: Table of subject score record (0 to 15 bar score) 

 

No. Object 
Bar length score 

Subject 1 Subject 2 Subject 3 

1 Knife 
Big 6 5 7 

Small 3 2 4 

2 Book 
Big 6 5 7 

Small 3 2 4 

3 Mug 
Big 6 5 7 

Small 3 2 4 

4 Box 
Big 6 5 7 

Small 3 2 4 

5 Phone 
Big 6 5 7 

Small 3 2 4 

6 Saddle 
Big 6 5 7 

Small 3 2 4 

7 Screwdriver 
Big 6 5 7 

Small 3 2 4 

8 Tupperware 
Big 6 5 7 

Small 3 2 4 

9 Duster 
Big 6 5 7 

Small 3 2 4 

10 Bottle 
Big 6 5 7 

Small 3 2 4 
 

From the results obtained, good p-values suggest that the subjects have 

good muscle motor control skills [18]. This is because the FSR (RP-S40-ST) 

with a 10K Ω of resistance is very sensitive to the force applied on the surface 

of the FSR. The device can also be used with a higher resistance value to 

further increase the sensitivity of the FSRs. It is also true vice-versa as we 

decrease the resistance value, the FSRs will be less sensitive implying that a 

larger magnitude of force is required to achieve the same results as using a 10K 

Ω resistance [16], [19]. 

There was no obvious sign of hysteresis of the FSRs based on the 

evaluation. This indicates that the force applied to the FSRs was within the 

limits of the material wear and tear for the thin pressure-sensitive film of the 

FSRs [20], [21]. In the future, to improve the dependability of the FSRs, 

modelling the piezoelectric bender's hysteresis using the Bouc-Wen model is 
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highly suggested. Nonetheless, major causes of hysteresis are often caused by 
instantaneous displacement rather than small voltage fluctuation[22]-[23]. 

 

 
 

Figure 7: Scatter plot matrix of subject’s grip score comparison for big 

objects 

 

 
 

Figure 8: Scatter plot matrix of subject's grip score comparison for small 

objects 

 

In conclusion, from the study, there is no solid guarantee that the 

selected sensors were dependable for an accurate measurement of a palm 

gripping force, but it is a great choice to measure a small magnitude of force 

per surface area within a controlled condition [16]. This is proven as the FSR 

calibration shows a precise reading although less accurate in comparison to the 
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datasheet. All the tests show that sensors have similar readings when tested 

with 10K Ω resistance although the accuracy between the coding’s theoretical 

value and actual output bar graph score value may vary due to the fluctuation 

of sensor reading and the deteriorating of the sensor itself over time [16], [24]. 

 

 

Conclusion and Recommendation 
  
This study examines the systematic assessment to quantify palm gripping force 

in patients in terms of analogue reading of an FSR and representing it in 15 

unitless bar scores for rehabilitation progress tracking. The assessment was a 

success by mapping the calibration to the bar graph of the LCD Screen. 

According to the study findings, the graphs demonstrated that both sensor 

measurements are acceptable for detecting and recording observed force. 

However, the measurements of the gripping force during rehabilitation are not 

limited to weight only. Other parameters such as the centre of mass, and 

friction of the objects are not taken into consideration when designing the 15 

unitless bar score. 

The device will provide biofeedback for patients undergoing hand 

rehabilitation which will improve patients’ participation where the MRC scale 

is too complicated to support patients’ motivation. The device will be the first 

portable sensory of its kind that can monitor dynamic hand movements and 

give biofeedback to patients.  

Based on previous experiments, some recommendations are suggested 

based on efforts that have emerged throughout the conclusion of this project. 

This paper discussed the preliminary evaluation of the Palm Gripper 

Measurement Device on healthy subjects, hence a pre-clinical evaluation in 

controlled condition with hand grip and pinch weakness patients as identified 

by Rehabilitation Physician and Occupational Therapist need to be conducted 

for a more significant and relevant result. However, to prevent hysteresis 

errors, it is advisable for the device to incorporate a one-minute break between 

sessions. Longer break periods between sessions are advisable. 
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