OPTIMISATION OF KAFFIR LIME LEAVES (*Citrus hystrix*) VOLATILE OIL EXTRACTION BY PRESSURISED LIQUID EXTRACTION (PLE) USING RESPONSE SURFACE METHODOLOGY (RSM)

ABDUL RAHMAN BIN ABDUL GHAFAR

BACHELOR OF SCIENCE (Hons.) FOOD SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2013

This Final Year Project entitled **"Optimisation of Kaffir Lime Leaves** (*Citrus hystrix*) Volatile Oil Extraction by Pressurised Liquid Extraction (PLE) Using Response Surface Methodology (RSM)" was submitted by Abdul Rahman bin Abdul Ghafar, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Food Science and Technology, in the Faculty of Applied Sciences and was approved by

Dr. Zaibunnisa bt. Abdul Haiyee Supervisor B.Sc. (Hons.) Food Science and Technology Faculty of Applied Sciences Universiti Teknologi MARA 40450 Shah Alam Selangor

Dr. Normah bt. Ismail Project Coordinator B.Sc. (Hons.) Food Science and Technology Faculty of Applied Sciences Universiti Teknologi MARA 40450 Shah Alam Selangor Assoc. Prof. Dr. Noorlaila Ahmad Programme Coordinator B.Sc. (Hons.) Food Science and Technology Faculty of Applied Sciences Universiti Teknologi MARA 40450 Shah Alam Selangor

Date: _____

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1 INTRODUCTION

1.1	Background and problem statement	1
1.2	Significance of study	3
1.3	Objectives of study	4

CHAPTER 2 LITERATURE REVIEW

2.	1 Essential of	pils	5
2.	2 Volatile co	ompounds	5
	2.2.1	Composition of volatile compounds in kaffir lime lea	ves 6
		2.2.1.1 Citronellal	6
		2.2.1.2 Sabinene	7
		2.2.1.3 Myrcene	7
		2.2.1.4 α-pinene	8
2.	3 Citrus spe	cies	9
2.	4 Kaffir lim	e (<i>Citrus hystrix</i>)	10
	2.4.1	Uses and products	10
2.	5 Extraction	n methods for volatile oils	11
	2.5.1	Pressurised Liquid Extraction (PLE)	11
		2.5.1.1 Extraction parameters	13
	2.5.2	Other methods of extractions	16
		2.5.2.1 Distillation	16
		2.5.2.2 Soxhlet extraction	17
		2.5.2.3 Solvent extraction	18
		2.5.2.4 Supercritical Fluid Extraction (SFE)	19
2.	6 Response	Surface Methodology (RSM)	20
	-		

CHAPTER 3 METHODOLOGY

3.1	Materials		22
	3.1.1	Samples	22
3.2	Chemicals		22
3.3	Methods		23
	3.3.1	Moisture content	23
	3.3.2	Pressurised Liquid Extraction (PLE)	23
	3.3.3	Optimisation of kaffir lime leaves volatile oil using Response Surface Methodology (RSM)	24
	3.3.4	Gas Chromatography/Mass Spectrometry (GC/MS)	25
	3.3.5	Statistical analysis	25
	3.3.6	Oil yield	25
	3.3.7	Profiling of flavour compound	26

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Moisture con	ntent of kaffir lime leaves	27
4.2	Optimisation (PLE)	n of kaffir lime leaves extraction by Pressurised Liquid Extraction	28
	(FLE) 421	Model building and selection	31
	4.2.2	Validation of selected model	33
	4.2.3	Significant variables terms	34
	4.2.4	Optimisation condition for kaffir lime leaves volatile oil extraction by PLE	38
4.3	Citronellal c leaves extrac	compound and yield of volatile oil from kaffir lime	41
4.4	Major comp	ounds in kaffir lime leaves volatile oil	41

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion	45
5.2 Recommendation	45
CITED REFERENCES	46
APPENDICES	51
CURRICULUM VITAE	

ABTRACT

OPTIMISATION OF KAFFIR LIME LEAVES (Citrus hystrix) VOLATILE OIL EXTRACTION BY PRESSURISED LIQUID EXTRACTION (PLE) USING RESPONSE SURFACE METHODOLOGY (RSM)

Kaffir lime leaf (Citrus hystrix) is a source of natural flavouring widely used for a long term in the Asian country. The major constituent of Citrus hystrix has been reported is citronellal which is responsible for flavour. Usually kaffir lime leaves flavour available in the market is synthetic. Thus, this study is to introduce a natural kaffir lime leaves flavour based on extraction. Generally, conventional method has many disadvantages like production of thermally destructive compounds in the extract, time consuming and lower yield of the extract obtained. Current extraction methods like hydrodistillation and Soxhlet extraction are tedious, labour and time consuming. Thus, the major objectives of this study were to optimise more efficient and rapid Pressurised Liquid Extraction to produce quality kaffir lime leaves oleoresin. Optimised Pressurised Liquid Extraction conditions were at a temperature of 65.65 °C and a static time of 5.02 minutes. Flavour profilling of the extract obtained from this optimised condition was also been carried out using GC-MS. The compounds determined were sabinene, myrcene, α -pinene and citronellal. The concentration of the major marker compound, citronellal in the extract was 0.28 mg/100g. Moisture content in the fresh leaves was 59.22±0.39% and for dried leaves was 13.15±0.27%. The total percentage yield of the extract obtained using optimised condition was 56.16%. The volatile oil was analysed by using GC-MS to identify the major marker compound and the flavour profile of Citrus hystrix.