UNIVERSITI TEKNOLOGI MARA

INTEGRAL MEMBRANE FROM PSF/PVA/ QUATERNIZED CHITOSAN CROSS-LINKED WITH RHA SILICA POWDER FOR LI/MG SEPARATION

NUR SYAZWANIE IZZATI CHIK

Thesis submitted in fulfilment of the requirements for the degree of **Master of Science** (Chemical Engineering)

College of Engineering

July 2023

ABSTRACT

Membrane separation technology is one of the most effective methods to recover Li⁺ from salt-lake brine. Due to its high competition with Mg^{2+} , a new technique known as quaternization process is applied in membrane technology to develop a positively charged membrane which scientifically proven can separate high valent cation and low valent cation. The technique of quaternization required grafting quarternary ammonium groups, which serves as the positive charge carriers, onto the polymer chain. In this study, chitosan was quaternized with chlorohydroxypropyl trimethylammonium chloride (CHTAC) to formulate positively charge membrane. The quaternized chitosan (QCS) was then blended with polysulfone/polyvinyl alcohol and rice husk ash silica (RHAS) powder where the RHAS powder acted as a cross-linking agent. The formulation of the membrane consisted of two different loading concentrations of QCS at 2.5wt% and 5wt.%, and the loading of RHAS powder were varied at Owt.%, 0.5wt.% and lwt.%. The membranes were the characterised through Fourier Transform Infrared Spectroscopy (FTIR), Field - Emission Scanning Electron Microscopy (FESEM), Thermogravimetry Analysis (TGA), Zeta Potential Analysis (ZP), X-Ray Diffractometer (XRD) and contact angle. The RHAS powder was also characterised through X-Ray Diffractometer (XRD), Energy Dispersive X-Ray Fluorescence (EDXRF), Scanning Emissions Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR). The performance of the membrane was analysed through pure water flux analysis, antifouling analysis, and separation process between Li^+ and Mg^{2+} . According to data collected by EDXRF and XRD analysis, the modified extraction process had successfully extracted 98.24% of Si02 and the RHAS powder had an amorphous structure respectively. From the membrane characterisation, the membrane incorporated with lower QCS, at 0.5wt.% RHAS powder exhibited smaller pore size, had better thermal stability and improved membrane hydrophilicity. However, from zeta potential analysis, higher loading of QCS exhibited more positive charges compare to lower loading of QCS. Overall, the membrane containing RHAS powder had better and stable pure water flux and good antifouling behaviour especially at lower loading of QCS, and membrane incorporated with QCS showed a rejection towards Mg²⁺then able to recover high amount of Li⁺ through the separation process. Whereas some membrane suffers with inhomogeneous structure which had influenced its characteristic and performance. Amongst all membrane, it can be concluded that membrane Bl with lower QCS loading with 0.5wt.% of RHAS powder demonstrated the best characteristic and performance compared to other membranes. Hence, the formulation of membrane Bl has potential to be used for lithium recovery with additional advantage of utilising biomass in the membrane formulations.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my MSc and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor Dr. Norin Zamiah Kassim Shaari, and co-supervisors, Dr. Fazlena Hamzah and Dr. Nur Azrini Ramlee. Thank you for the support, patience and ideas in assisting me with this research.

I also would like to express my gratitude to staff of College of Engineering and Institute of Science who provided the facilities and assistance during sample analysis for this research. Special thanks to my colleagues and friends for helping me with this project.

Finally, this thesis is dedicated to my parents, and for their endless motivation and encouragement throughout this journey. This piece of victory is dedicated to both of you. Alhamdulilah

TABLE OF CONTENT

CONFIRMATION BY PANEL EXAMINERS

AUTHOUR'S DECALARATION

ABSTRACT

ACKNOWLEDGEMENT

TABLE OF CONTENT

LIST OF FIGURES

LIST OF TABLES

LIST OF SYMBOLS

LIST OF NOMENCLATURES

CHAPTER ONE: INTRODUCTION

- 1.1 Background of Study
- 1.2 Problem Statement
- 1.3 Research Obj ectives
- 1.4 Scope and Limitation of The Study
- 1.5 Significance of The Study

CHAPTER TWO: LITERATURE REVIEW

- 2.1 Sources of Lithium
 - 2.1.1 Lithium Extraction Methods
 - 2.1.2 Lithium Extraction from Brine
- 2.2 Mechanism of Membrane Filtration Process
 - 2.2.1 Adsorption Membrane

2.3 Polymer Selection for Membrane

- 2.3.1 Polysulfone (PSF)
- 2.3.2 Polyvinyl Alcohol (PVA)

2.3	.3 Chitosan(CS)			26
2.3	.3.4 Membrane Synthesis Method			27	
2.3	5 Phase Inversion Method for Integral Membrane Formation		brane Formation	29	
2.4	Polymer Blendi	ing			30
2.5 Quaternization Process					32
2.6 Rice Husk Ash as Cross-linker					35
2.6	.1 Silica Extr	action Method			38
2.7	Surface	Charge	of	Membrane	40

....

L	HAPTE	K THREE: KESEARCH METHODOLOGY	42		
	3.1 F	esearch Framework			
	3.2 N	Aaterials	46		
	3.3 N	Membrane Preparation	46		
	3.3.1	Preparation of Silica Powder from RHA	46		
	3.3.2	Preparation of PVA/RHAS Solution	47		
	3.3.3 Preparation of Quaternized Chitosan (QCS)				
	3.3.4 Preparation of Hybrid Membrane Solution from PVA/RHAS/QCS				
	Using	solgel Method	48		
	3.3.5	Preparation of Polysulfone (PSF) Solution	49		
	3.3.6	Preparation of Integral Membrane from PSF/PVA/RHAS/QCS	49		
	3.4 (Characterization of Integral Membrane	50		
	3.4.1	Fourier Transform Infrared Spectroscopy (FTIR)	51		
	3.4.2	3.4.2 Field - Emission Scanning Electron Microscopy (FESEM)			
	3.4.3	Thermogravimetry Analysis (TGA)	51		
	3.4.4	Surface Charge Analysis (Zeta Potential)	52		
	3.4.5	Contact Angle	52		
	3.4.6	X-Ray Diffractometer (XRD)	52		
	3.5 (Characterization of RHAS powder	53		
	3.5.1	Fourier Transform Infrared Spectroscopy (FTIR)	53		
	3.5.2	X-Ray Diffractometer (XRD)	53		
	3.5.3	Energy Dispersive X-Ray Fluorescence Spectrometer (EDXRF)	53		
	3.5.4	Scanning Electron Microscopy (SEM)	54		
	3.6 N	Aembrane Performance Analysis	54		