UNIVERSITI TEKNOLOGI MARA

SYNTHESIS OF Murdannia loriformis-MEDIATED SILVER NANOPARTICLES AND ITS ANTIBACTERIAL PROPERTIES

NAZATUL NABILA BINTI MOHAMAD

Thesis submitted in fulfilment of the requirements for the degree of **Master of Science** (Chemical Engineering)

College of Engineering

June 2023

ABSTRACT

Silver is known for its antimicrobial effects and silver nanoparticles (AgNPs) are gaining their importance due to their antimicrobial activities. This study describes the synthesis of AgNPs using Murdannia loriformis extract (MLE) as a reducing agent and silver nitrate as a metal precursor. The effect of MLE concentration, AgNO₃ concentration, reaction time, and pH on the synthesis of MLE-mediated AgNPs was studied using one-factor-at-a-time (OFAT) method. From the TEM image, highly scattered AgNPs with a spherical shape and an average particle size of around 12.60 nm ± 2.83 nm was observed at optimized conditions (pH 8, 100% MLE concentration, 2mM of AgNO₃, and 60 min reaction time). The crystalline nature of the MLE-mediated AgNPs in face centre cubic (FCC) structure was confirmed by the peaks in XRD pattern. The flavonoids, sterols, carbohydrates, and proteins in MLE were believed responsible for Ag⁺ reduction. For the colloidal stability study, polyvinylpyrrolidone (PVP) and sodium citrate (SC) were added as a stabilizing agent. From the TEM images, zeta potential and UV-vis SPR results, it can be concluded that the stability of AgNPs at high concentration (5 mM and 10 mM) is improved after the addition of stabilizing agent. From the zeta potential observation, MLE-mediated AgNPs modified with sodium citrate (MLE-AgNPs-SC) showed the better stability compared to MLEmediated AgNPs and MLE-mediated AgNPs modified with polyvinylpyrrolidone (MLE-AgNPs-PVP). The antibacterial properties was performed by disk diffusion method. It was observed that MLE-mediated AgNPs showed enhanced antibacterial activity depicting the inhibition zone between 18.27 and 22.09 mm was reported against Escherichia coli compared to Staphylococcus aureus, which the inhibition zone between 9.11 and 10.99 mm. For AgNPs modified with polymer: MLE-AgNPs-PVP and MLE-AgNPs-SC against Escherichia coli and Staphylococcus aureus were decreased based on the inhibition zone of 8.82 - 8.94 mm and 8.77 - 8.95 mm, respectively. It can be concluded that the antibacterial properties of modified AgNPs with polymer as stabilizing agent (PVP and SC) decreased compared to MLE-mediated AgNPs at same concentration. More extensive analysis is required for the appropriate selection of the synthesis parameters and adequate concentration for use in biomedical applications and antibacterial control systems.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my Master study and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor Dr Norain Isa and co-supervisor Dr Ainorkhilah Mahmood.

My appreciation goes to the lecturers, technicians and administration staff of Chemical Engineering Studies, UiTM Cawangan Pulau Pinang who provided the facilities and assistance during experimental and analysis. Special thanks to my friends for helping me with this project.

Finally, this thesis is dedicated to the loving parent, husband and family for the vision and determination to educate me. This piece of victory is dedicated to all of you. Alhamdulilah.

TABLE OF CONTENTS

Page

CON	FIRMA	TION BY PANEL OF EXAMINERS	ii
AUT	HOR'S	DECLARATION	iii
ABS	ABSTRACT		
ACKNOWLEDGEMENT			v
TAB	LEOF	CONTENTS	vi
LIST	OF TA	BLES	X
LIST	OF FI	GURES	xi
LIST OF SYMBOLS			
LIST	OF AB	BREVIATIONS	xiv
CHA	PTER 1	INTRODUCTION	15
1.1	Resear	rch Background	15
1.2	Proble	em Statement	16
1.3	Objec	tives	18
1.4	Scope	of Study	18
1.5	Signif	icance of Study	19
CHA	PTER 2	2 LITERATURE REVIEW	20
2.1	Introd	uction	20
2.2	Synthe	esis of AgNPs	21
	2.2.1	Physical Method	23
	2.2.2	Chemical Method	23
	2.2.3	Biological Method	23
2.3	Plant 1	Extract as Reducing Agent in Synthesis of AgNPs	24
	2.3.1	Murdannia loriformis	26
2.4	Identi	fication of phytoconstituent in plant extract	31
2.5	Synthesis of MLE-Mediated AgNPs: Effect of Variables Parameters		
	2.5.1	Effect of pH	33
	2.5.2	Effect of Concentration of Reducing agent	33

	2.5.3 Effect of Concentration of AgNO ₃	34	
	2.5.4 Effect of Contact time	35	
2.6	Characterization of AgNPs		
	2.6.1 UV-visible Spectroscopy	37	
	2.6.1 Fourier Transform Infrared	38	
	2.6.2 Microscopy Technique	39	
	2.6.3 Zeta Potential	40	
2.7	Stability of AgNPs		
2.8	Agglomeration of AgNPs		
2.9	Modification of AgNPs Surface		
	2.9.1 Types of stabilizing agents	42	
2.10	Antibacterial Properties of AgNPs	46	
2.11	Factors Influencing Antibacterial Activity of AgNPs	48	
	2.11.1 Size of AgNPs	48	
	2.11.2 Shape of AgNPs	49	
	2.11.3 Chemistry of AgNPs Surfaces	49	
2.12	Antibacterial Mechanisms Activated by AgNPs	50	
CHA	PTER 3 RESEARCH METHODOLOGY	53	
3.1	Introduction	53	
3.2	Reagent and Materials		
3.3	Preparation of <i>Murdannia loriformis</i> extract (MLE) 5		
3.4	Identification of phytoconstituent in MLE		
	3.4.1 Phytochemicals Screening Tests	56	
	3.4.2 Carbohydrate and Protein Content	57	
	3.4.3 FTIR Spectroscopic Analysis	57	
3.5	Synthesis of MLE-Mediated AgNPs using One-Factor-At-A-Time		
	(OFAT) Method (Objective 1)	58	
	3.5.1 Effect of pH	58	
	3.5.2 Effect of AgNO ₃ as Metal Precursor	58	
	3.5.3 Effect of Contact time	58	
	3.5.4 Effect of MLE Concentration as Reductant	59	
3.6	Characterization of MLE-mediated AgNPs (Objective 1)		
3.7	Stability Studies of Synthesized AgNPs (Objective 2) vii	60	
	¥ 11		