UNIVERSITI TEKNOLOGI MARA

COAGULATION – FLOCCULATION AND PERFORMANCE EVALUATION OF *HYLOCEREUS UNDATUS* (WHITE DRAGON FRUIT) FOLIAGE AS A NATURAL COAGULANT FOR PAINT WASTEWATER TREATMENT

AINA AFIQAH BINTI RAMLEE

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Chemical Engineering)

College of Engineering

July 2023

ABSTRACT

Towards exploring the application of natural coagulants in industrial wastewater treatment, plant-based coagulants have been gaining more interests due to its potentials such as biodegradability and easy availability. Hylocereus undatus foliage as the plantbased coagulant has been proven to be efficient during the coagulation – flocculation process; however, limited research has been reported focusing only on palm oil mill effluent (POME) and latex concentrate wastewater. In addition, limited study has been carried out to determine the performance evaluation of *H.undatus* foliage in treating different types of wastewaters incorporating different operating conditions using optimization techniques. Hence, this study employed response surface methodology (RSM) in an attempt to determine the performance evaluation of the coagulant in paint wastewater treatment, its characterization, and the mechanism that prompts the coagulation – flocculation process. The standard jar test method was utilized in investigating the effect of pH value, coagulant dosage, rapid mixing speed and temperature as the operating conditions on turbidity, chemical oxygen demand (COD) and suspended solids (SS). Through central composite design (CCD) via Design Expert software, the optimum conditions were achieved at pH 5, coagulant dosage of 300 mg/L, rapid mixing speed of 120 rpm and temperature at 30°C. The experimental data was observed to be close to the model predictions with the optimum turbidity, COD and SS removal efficiencies at 62.81%, 59.57% and 57.23%, respectively. Rather, the final turbidity, COD, and SS are 28,700, 36,000, and 680 mg/L, respectively. The increase of the zeta potential value from -21.9 to -1.33 experienced by the paint wastewater and the recovered sludge at optimum condition demonstrated the effectiveness of *H.undatus* foliage, with magnitude charge of ± 1.03 mV, as perceived of possessing sufficient H⁺ ions, typically in cationic coagulants, in prompting charge neutralization mechanism during coagulation process. Moreover, the FTIR spectroscopy disclosed the presence of carbonyl, carboxyl, amides, and amines groups which contributed to both particle bridging and charge neutralization mechanisms. Meanwhile, SEM-EDX analysis showed rough and porous structure of the foliage which was suitable for the coagulation - flocculation process. The foliage contained 68.95% of carbon composition that acts as a binding agent, and metallic compounds like potassium, calcium, magnesium, and aluminium. Thermographic profiles analysis revealed that two distinctive zones were observed for the *H.undatus* foliage and the sludge, indicating the degradation of carbohydrates and lipids in the first zone at 0.45 mg/min followed by the degradation of proteins in the second zone at 0.035mg/min. However, a single degradation zone was observed for the raw paint wastewater, indicating protein degradation. This indicates that adsorption mechanism during the process, supported by the high BET surface area of 0.5882 m^2/g from the foliage significantly provides the availability of higher concentration of adsorption sites for the coagulation-flocculation process. In conclusion, H.undatus foliage demonstrated cationic coagulants behaviour and has further proven its efficiency as a natural coagulant in treating paint wastewater.

ACKNOWLEDGEMENT

First and foremost, all praises to Allah for this given opportunity to embark on my master's degree despite the challenging journey and being able to pull through even with the COVID-19 outbreak. It was only possible for me to successfully complete this thesis with endless support of the kind people around me. Furthermore, I would like to express my utmost gratitude and thanks to my main supervisor, Prof Dr Ayub bin Md Som as the completion of this thesis is made possible with his supervision, advice, support, and the incomparable knowledge throughout this experience. The good advice and guidance of my co-supervisor, Dr Siti Wahidah binti Puasa also have been very valuable on many levels. In addition, I would also like to extend my gratefulness to ChM Dr Hairul Amani binti Abdul Hamid from the Faculty of Applied Sciences for her expertise and wisdom especially regarding the later part of the research, enabling me to conclude my objectives. Moreover, a token of appreciation is dedicated particularly to the School of Chemical Engineering and Institute of Science of UiTM Shah Alam for providing ample assistance and conducive facilities and analytical equipment in conducting the experimental runs and analyses required in achieving the purposes of this study. Last but not least, I would also express my appreciation to my family members, especially to my mother Masnida for the many levels of support and prayers for the strength and motivation in eventually completing this thesis.

TABLE OF CONTENTS

CONFIRMATION BY PANEL OF EXAMINERS				
AUT	HOR'S	DECLARATION	iii	
ABS	iv			
ACK	v			
TAB	vi			
LIST	X			
LIST	xi			
LIST	xiii			
LIST	Г ОF AF	BBREVIATIONS	xiv	
LIST	Γ OF NO	DMENCLATURE	XV	
CHA	PTER	ONE INTRODUCTION	1	
1.1	Resea	rch Background	1	
1.2	Proble	em Statement	3	
1.3	Resea	rch Questions	4	
1.4	Resea	rch Objectives	4	
1.5	Scope	es and Limitations	5	
1.6	Signif	ficance of Study	6	
CHA	APTER '	TWO LITERATURE REVIEW	7	
2.1	Funda	amental of Coagulation – Flocculation Process	7	
2.2	Coagi	Coagulation – Flocculation Mechanisms		
	2.2.1	Charge Neutralization	9	
	2.2.2	Polymer Bridging	9	
	2.2.3	Adsorption	10	
	2.2.4	Sweep Coagulation	11	
	2.2.5	Patch Mechanism	11	
2.3	Pollut	12		
	2.3.1	Turbidity	14	

	2.3.2	Chemical Oxygen Demand (COD)	14
	2.3.3	Suspended solids (SS)	15
	2.3.4	Biochemical Oxygen Demand (BOD)	15
	2.3.5	Heavy metals and Colour	15
2.4	Paint Wastewater in Industry		
2.5	Impor	tance of Operating Conditions in Coagulation – Flocculation	18
	2.5.1	pH Value	18
	2.5.2	Coagulant Dosage	19
	2.5.3	Mixing Speed and Time	21
	2.5.4	Temperature	22
	2.5.5	Settling Time	23
2.6	Source	es of Natural Coagulants	24
2.7	Types	of Natural Coagulants	25
	2.7.1	Cationic Coagulants	28
	2.7.2	Anionic Coagulants	30
	2.7.3	Non – Ionic Coagulants	32
	2.7.4	Unknown Coagulants	35
2.8	Applie	cation of Natural Coagulants in Wastewater Treatment	37
2.9	Characterisation of Natural Coagulants		
2.10	Hyloc	ereus genus as Natural Coagulants	46
	2.10.1	Hylocereus genus	46
	2.10.2	e Hylocereus polyrhizus	48
	2.10.3	Hylocereus undatus	49
2.11	Desig	n of Experiment (DOE)	50
	2.11.1	One – Factor - at – Time (OFAT)	50
	2.11.2	Response Surface Methodology (RSM)	51
	2.11.3	Application of Central Composite Design (CCD)	56
	2.11.4	Model Verification by Analysis of Variance (ANOVA)	57
СНА	PTER	THREE RESEARCH METHODOLOGY	58
3.1	Overa	ll Research Overview	58
3.2	Preparation of H.undatus Foliage as Natural Coagulant		
3.3	Collec	ction of Wastewater Sample	61
3.4	Jar tes	at experiment	61
		vii	