$$
\begin{aligned}
& \frac{x-2}{1 \times 3} Q_{+\infty}^{\prime \prime} \quad \int\left(x \pm a^{2}\right) \quad e=2,79 \\
& \sum_{n=Q}^{+\infty} \frac{x^{n}}{n!} \quad \phi=\sqrt{\frac{\sum(x-m)^{2}}{n} 1} \\
& =\subset 0 \\
& \ln / x \\
& -\frac{3 a}{x} \\
& \text { CALCULUSI: } \\
& \text { LIMITS } \\
& \text { AISHAH MAHAT } \\
& 9 x+0 \\
& =2 x^{2} \quad \quad \begin{array}{l}
\text { AISHAH MAHAT } \\
\text { NABLL NALSIE }
\end{array} \\
& 12=\frac{b=}{r}
\end{aligned}
$$

CALCULUS 1: LIMITS

Aishah Mahat
Nabil Naszrie
Nur Liyana Izzati Izazuly

Contents

Disclaimer 4
Preface 5
Basic Theorem on Limits 6
Limit: Direct Substitution 8
Limit: Factorization 15
Limit: Conjugate 17
Limit: Infinity 23
Limit: Trigonometric Function 28
Reference 34

DISCLAIMER

Copyright @ 2024 by Aishah Mahat, Nabil Naszrie, and Nur Liyana Izzati Izazuly. All rights reserved. No part of this work covered by copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, taping or any information storage, without the prior permission of the authors.

Author

Aishah Mahat
Nabil Naszrie
Nur Liyana Izzati Izazuly

Editor \& Illustrator

Aishah Mahat
Nabil Naszrie
Nur Liyana Izzati Izazuly
Publisher:
Universiti Teknologi MARA
Cawangan Johor Kampus Pasir Gudang
Jalan Purnama, Bandar Seri Alam, 81750, Masai
January 2024
e ISBN:

PREFACE

This e-book, Calculus 1: Limits aimed to help students in mathematic subject. Targeted users for this module is students who take foundation course. Mathematical tips and formulas will be placed in accordance to the subtopics whilst each questions will be displayed based on the syllabus carried out during the lesson. At the end of each topic, targeted students should meet up with the lecturer to discuss over the solution of mathematics problem. With the existence of this e-book, hopefully it will be beneficial and give positive impact towards teaching and learning for students and lecturers as a whole.

Basic Theorems on Limit
<b "Let $\lim f(x)=L$ and $\lim g(x)=M$ "

$$
x \rightarrow a \quad x \rightarrow a
$$

1) $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$

$$
=L+M
$$

2) $\quad \lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$

$$
=L-M
$$

3) $\lim _{x \rightarrow a} M f(x)=M \lim _{x \rightarrow a} f(x)$

$$
=M(L)
$$

4) $\lim _{x \rightarrow a} f(x) \cdot g(x)=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$

$$
=L \cdot M
$$

5) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} f(x)}$

$$
=\frac{L}{M}
$$

6) $\lim _{x \rightarrow a}[f(x)]^{c}=\left[\lim _{x \rightarrow a} f(x)\right]^{c}$

$$
=L^{c}
$$

7) $\lim _{x \rightarrow a} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow a} f(x)}$

$$
=\sqrt{L}
$$

Limit : Direct Substitution

Properties of Limits

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Exercise 1:

Determine the limit for each of the following.
$\lim x^{2}+3 x-18$
a) $x \rightarrow 3$
b) $\lim _{x \rightarrow-2} 2 x^{3}-x^{2}+3 x-4$
c) $\lim _{x \rightarrow 5}\left(7+\sqrt{x^{2}+11}\right)$

Exercise 2:

Evaluate the limit for the following functions.
a) $\lim _{x \rightarrow 1}\left(\frac{x^{2}-4}{x+1}\right)$
b) $\lim _{x \rightarrow 2}\left(\frac{x^{2}+6 x+8}{x^{2}+4}\right)$

Solution:

Exercise 1

a) $\quad \lim _{x \rightarrow 3} x^{2}+3 x-18$

$$
=3^{2}+3(3)-18
$$

$$
=0
$$

b) $\quad \lim _{x \rightarrow-2} 2 x^{3}-x^{2}+3 x-4$

$$
\begin{aligned}
& =2(-2)^{3}-(-2)^{2}+3(-2)-4 \\
& =-30
\end{aligned}
$$

C) $\quad \lim _{x \rightarrow 5}\left(7+\sqrt{x^{2}+11}\right)$
$=7+\sqrt{5^{2}+11}$
$=13$

Exercise 2

a) $\quad \lim _{x \rightarrow 1}\left(\frac{x^{2}-4}{x+1}\right)$

$$
=\frac{1^{2}-4}{1+1}
$$

$$
=-\frac{3}{2}
$$

b) $\quad \lim _{x \rightarrow 2}\left(\frac{x^{2}+6 x+8}{x^{2}+4}\right)$
$=\frac{2^{2}+6(2)+8}{2^{2}+4}$
$=\frac{24}{8}$
$=3$

Limit: Factorization

Find the limits by factoring

Exercise 1:

Determine the limit for the following function.
a) $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2}$
b) $\lim _{t \rightarrow 0} \frac{2 t^{4}+5 t^{3}}{6 t^{6}+4 t^{3}}$

Exercise 2:

Evaluate $\lim _{x \rightarrow 0} \frac{e^{2 x}-e^{4 x}}{1-e^{2 x}}$

Exercise 3 :

Evaluate the limit : $\lim _{x \rightarrow 3} \frac{3-x}{x^{2}-3 x}$

Exercise 4 :

Evaluate $\lim _{x \rightarrow-2} f(x)$ if $f(x)=\left\{\begin{array}{l}\frac{2 x^{2}-5}{6+x} \text { if } x \leq-2 \\ \frac{x^{2}-2 x-8}{x^{2}-4 x-12} \text { if } x \geq-2\end{array}\right.$

Solution:

Exercise 1:

a) $1^{\text {st }}$ Method : Direct Substitution

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2} \\
& =\frac{2^{2}+2-6}{2-2} \\
& =\frac{0}{0}(\text { Undef ined })
\end{aligned}
$$

$2^{\text {nd }}$ Method: Factorization

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+3)}{x-2} \\
& =\lim _{x \rightarrow 2} x+3 \\
& =2+3 \\
& =5
\end{aligned}
$$

b) $1^{\text {st }}$ Method : Direct Substitution

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \frac{2 t^{4}+5 t^{3}}{6 t^{6}-4 t^{3}} \\
& =\frac{2(0)^{4}+5(0)^{3}}{6(0)^{6}-4(0)^{3}} \\
& =\frac{0}{0}(\text { Undef ined })
\end{aligned}
$$

$2^{\text {nd }}$ Method: Factorization

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{2 t^{4}+5 t^{3}}{6 t^{6}-4 t^{3}} & =\lim _{t \rightarrow 0} \frac{t^{3}(2 t+5)}{t^{3}\left(6 t^{3}-4\right)} \\
& =\lim _{t \rightarrow 0} \frac{2 t+5}{6 t^{3}-4} \\
& =\frac{2(0)+5}{6(0)^{3}-4} \\
& =-\frac{5}{4}
\end{aligned}
$$

Exercise 2:

$1^{\text {st }}$ Method : Direct Substitution
$\lim _{x \rightarrow 0} \frac{e^{2}-e^{4 x}}{1-e^{2 x}}$
$=\frac{e^{2(0)}-e^{4(0)}}{1-e^{2(0)}}$
$=\frac{0}{0}($ Undef ined $)$
$2^{\text {nd }}$ Method: Factorization

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{2}-e^{4 x}}{1-e^{2 x}} & =\lim _{x \rightarrow 0} \frac{e^{2 x}\left(1-e^{2 x}\right)}{1-e^{2 x}} \\
& =\lim _{x \rightarrow 0} e^{2 x} \\
& =e^{2(0)} \\
& =1
\end{aligned}
$$

Exercise 3 :

$1^{\text {st }}$ Method : Direct Substitution
$\lim _{x \rightarrow 3} \frac{3-x}{x^{2}-3 x}$
$=\frac{3-3}{3^{2}-3(3)}$
$=\frac{0}{0}($ Undef ined $)$
$2^{\text {nd }}$ Method : Factorization

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{3-x}{x^{2}-3 x} & =\lim _{x \rightarrow 3} \frac{3-x}{x(x-3)} \\
& =\lim _{x \rightarrow 3} \frac{-(-3+x)}{x(x-3)} \\
& =-\lim _{x \rightarrow 3} \frac{1}{x} \\
& =-\frac{1}{3}
\end{aligned}
$$

Exercise 4 :

Left Hand Limit

$$
\begin{aligned}
\lim _{x \rightarrow-2^{-}} f(x) & =\lim _{x \rightarrow-2^{-}} \frac{2 x^{2}-5}{x-5} \\
& =\frac{2(-2)^{2}-5}{(-2)-5} \\
& =\frac{3}{4}
\end{aligned}
$$

Right Hand Limit

$1{ }^{\text {st }}$ Method: Factorization

$$
\begin{aligned}
\lim _{x \rightarrow-2^{+}} f(x) & =\lim _{x \rightarrow-2^{+}} \frac{x^{2}-2 x-8}{x^{2}-4 x-12} \\
& =\frac{(-2)^{2}-2(-2)-8}{(-2)^{2}-4(-2)-12} \\
& =\frac{0}{0}(\text { Undef ined })
\end{aligned}
$$

$2^{\text {nd }}$ Method: Factorization

$$
\begin{aligned}
\lim _{x \rightarrow-2^{+}} f(x) & =\lim _{x \rightarrow-2^{+}} \frac{x^{2}-2 x-8}{x^{2}-4 x-12} \\
& =\lim _{x \rightarrow-2^{+}} \frac{(x-4)(x+2)}{(x-6)(x+2)} \\
& =\lim _{x \rightarrow-2^{+}} \frac{x-4}{x-6} \\
& =\frac{(-2)-4}{(-2)-6} \\
& =\frac{-6}{-8} \\
& =\frac{3}{4}
\end{aligned}
$$

 Limit : Conjugate

Find the limit using conjugate

Exercise 1:

Evaluate each of the following limit:
a) $\lim _{x \rightarrow 3} \frac{3 x-9}{\sqrt{x+6}-3}$
b) $\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+5}-3}{x-2}$

Exercise 2:

Find $\lim _{x \rightarrow 0} \frac{(5 x-2)+\sqrt{x+4}}{2 x}$

Exercise 3 :

Determine :
a) $\lim _{x \rightarrow 1} \frac{\sqrt{x+6}-\sqrt{7}}{x-1}$
b) $\lim _{x \rightarrow 5} \frac{\sqrt{5}-\sqrt{10-x}}{x^{2}-25}$

Solution:

Exercise 1:

a) $1^{\text {st }}$ Method : Direct Substitution

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{3 x-9}{\sqrt{x+6}-3} & =\frac{3(3)-9}{\sqrt{(3)+6}-3} \\
& =\frac{9-9}{3-3} \\
& =\frac{0}{0}(\text { Undefined })
\end{aligned}
$$

$2^{\text {nd }}$ Method: Conjugate

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{3 x-9}{\sqrt{x+6}-3} & =\lim _{x \rightarrow 3} \frac{3 x-9}{\sqrt{x+6}-3} \cdot \frac{\sqrt{x+6}+3}{\sqrt{x+6}+3} \\
& =\lim _{x \rightarrow 3} \frac{(3 x-9) \cdot \sqrt{x+6}+3}{x+6+3 \sqrt{x+6}-3 \sqrt{x+6}-9} \\
& =\lim _{x \rightarrow 3} \frac{(3 x-9) \cdot \sqrt{x+6}+3}{x+6-9} \\
& =\lim _{x \rightarrow 3} \frac{3(x-3) \cdot \sqrt{x+6}+3}{(x-3)} \\
& =\lim _{x \rightarrow 3} 3 \cdot \sqrt{x+6}+3 \\
& =3 \cdot \sqrt{(3)+6}+3 \\
& =3 \cdot 6 \\
& =18
\end{aligned}
$$

b) $1^{\text {st }}$ Method : Direct Substitution

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+5}-3}{x-2} & =\frac{\sqrt{(2)^{2}+5}-3}{(2)-2} \\
& =\frac{3-3}{2-2} \\
& =\frac{0}{0}(\text { Undef ined })
\end{aligned}
$$

$2{ }^{\text {nd }}$ Method : Conjugate

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+5}-3}{x-2} & =\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+5}-3}{x-2} \cdot \frac{\sqrt{x^{2}+5}+3}{\sqrt{x^{2}+5}+3} \\
& =\lim _{x \rightarrow 2} \frac{x^{2}+5-3 \sqrt{x^{2}+5}+3 \sqrt{x^{2}+5}-9}{(x-2) \cdot \sqrt{x^{2}+5}+3} \\
& =\lim _{x \rightarrow 2} \frac{x^{2}-4}{(x-2) \cdot \sqrt{x^{2}+5}+3} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2) \cdot \sqrt{x^{2}+5}+3} \\
& =\lim _{x \rightarrow 2} \frac{(x+2)}{\sqrt{x^{2}+5}+3} \\
& =\frac{[(2)+2]}{\sqrt{(2)^{2}+5}+3} \\
& =\frac{2+2}{3+3} \\
& =\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

Exercise 2 :

$1^{\text {st }}$ Method : Direct Substitution

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{(5 x-2)+\sqrt{x+4}}{2 x} & =\frac{[5(0)-2]+\sqrt{(0)+4}}{2(0)} \\
& =\frac{0}{0}(\text { Undef ined })
\end{aligned}
$$

$2^{\text {nd }}$ Method : Conjugate

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{(5 x-2)+\sqrt{x+4}}{2 x} & =\lim _{x \rightarrow 0} \frac{(5 x-2)+\sqrt{x+4}}{2 x} \cdot \frac{(5 x-2)-\sqrt{x+4}}{(5 x-2)-\sqrt{x+4}} \\
& =\lim _{x \rightarrow 0} \frac{(5 x-2)(5 x-2)-(5 x-2) \sqrt{x+4}+(5 x-2) \sqrt{x+4}-(x+4)}{2 x \cdot(5 x-2)-\sqrt{x+4}} \\
& =\lim _{x \rightarrow 0} \frac{25 x^{2}-10 x-10 x+4-x-4}{2 x \cdot(5 x-2)-\sqrt{x+4}} \\
& =\lim _{x \rightarrow 0} \frac{25 x^{2}-21 x}{2 x \cdot(5 x-2)-\sqrt{x+4}} \\
& =\lim _{x \rightarrow 0} \frac{x(25 x-21)}{2 x \cdot(5 x-2)-\sqrt{x+4}} \\
& =\lim _{x \rightarrow 0} \frac{25 x-21}{2 \cdot(5 x-2)-\sqrt{x+4}} \\
& =\frac{25(0)-21}{2 \cdot[5(0)-2]-\sqrt{(0)+4}} \\
& =\frac{-21}{2 \cdot(-4)} \\
& =\frac{-21}{-8}=\frac{21}{8}
\end{aligned}
$$

Exercise 3 :

a) $1^{\text {st }}$ Method : Direct Substitution

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\sqrt{x+6}-\sqrt{7}}{x-1} & =\frac{\sqrt{(1)+6}-\sqrt{7}}{(1)-1} \\
& =\frac{\sqrt{7}-\sqrt{7}}{1-1} \\
& =\frac{0}{0}(\text { Undef } \text { ined })
\end{aligned}
$$

$2{ }^{\text {nd }}$ Method : Conjugate

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\sqrt{x+6}-\sqrt{7}}{x-1} & =\lim _{x \rightarrow 1} \frac{\sqrt{x+6}-\sqrt{7}}{x-1} \cdot \frac{\sqrt{x+6}+\sqrt{7}}{\sqrt{x+6}+\sqrt{7}} \\
& =\lim _{x \rightarrow 1} \frac{x+6+\sqrt{x+6} \sqrt{7}-\sqrt{x+6} \sqrt{7}-7}{(x-1) \cdot \sqrt{x+6}+\sqrt{7}} \\
& =\lim _{x \rightarrow 1} \frac{x+6-7}{(x-1) \cdot \sqrt{x+6}+\sqrt{7}} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)}{(x-1) \cdot \sqrt{x+6}+\sqrt{7}} \\
& =\lim _{x \rightarrow 1} \frac{1}{\sqrt{x+6}+\sqrt{7}} \\
& =\frac{1}{\sqrt{(1)+6}+\sqrt{7}} \\
& =\frac{1}{\sqrt{7}+\sqrt{7}} \\
& =\frac{1}{2 \sqrt{7}}
\end{aligned}
$$

b) $\quad 1^{\text {st }}$ Method : Direct Substitution

$$
\begin{aligned}
\lim _{x \rightarrow 5} \frac{\sqrt{5}-\sqrt{10-x}}{x^{2}-25} & =\frac{\sqrt{5}-\sqrt{10-(5)}}{(5)^{2}-25} \\
& =\frac{\sqrt{5}-\sqrt{5}}{25-25} \\
& =\frac{0}{0}(\text { Undefined })
\end{aligned}
$$

$2{ }^{\text {nd }}$ Method : Conjugate

$$
\begin{aligned}
\lim _{x \rightarrow 5} \frac{\sqrt{5}-\sqrt{10-x}}{x^{2}-25} & =\lim _{x \rightarrow 5} \frac{\sqrt{5}-\sqrt{10-x}}{x^{2}-25} \cdot \frac{\sqrt{5}+\sqrt{10-x}}{\sqrt{5}+\sqrt{10-x}} \\
& =\lim _{x \rightarrow 5} \frac{5-\sqrt{5} \sqrt{10-x}+\sqrt{5} \sqrt{10-x}-(10-x)}{\left(x^{2}-25\right) \cdot \sqrt{5}+\sqrt{10-x}} \\
& =\lim _{x \rightarrow 5} \frac{5-10+x}{\left(x^{2}-25\right) \cdot \sqrt{5}+\sqrt{10-x}} \\
& =\lim _{x \rightarrow 5} \frac{(x-5)}{(x+5)(x-5) \cdot \sqrt{5}+\sqrt{10-x}} \\
& =\lim _{x \rightarrow 5} \frac{1}{(x+5) \cdot \sqrt{5}+\sqrt{10-x}} \\
& =\frac{1}{[(5)+5] \cdot \sqrt{5}+\sqrt{10-(5)}} \\
& =\frac{1}{10 \cdot \sqrt{5}+\sqrt{5}} \\
& =\frac{1}{10 \cdot 2 \sqrt{5}} \\
& =\frac{1}{20 \sqrt{5}}
\end{aligned}
$$

(1) Limit : Infinity (1)

Divide the numerator and denominator by the highest power of x in the denominator.

Exercise 1:

Evaluate the limit for the following functions.
a) $\lim _{x \rightarrow \infty} \frac{x^{3}+2 x^{2}-3 x+5}{x^{3}+6 x}$
b) $\lim _{x \rightarrow-\infty} \frac{(x-5)^{2}}{4 x^{2}-13 x}$

Exercise 2:

Evaluate $\lim _{x \rightarrow \infty} \sqrt{\frac{x^{4}-7}{x^{3}+2 x^{2}}}$

Exercise 3 :

Determine the limit for the following function.
a) $\lim _{x \rightarrow \infty} \frac{\sqrt{6 x^{2}+9}}{4 x-1}$
b) $\lim _{x \rightarrow-\infty} \frac{9 x^{2}+7 x}{\sqrt{9 x^{4}+6}}$

Solution:

Exercise 1:

a) Answer :

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{3}+2 x^{2}-3 x+5}{x^{3}+6 x} & =\lim _{x \rightarrow \infty} \frac{\frac{x^{3}}{x^{3}}+\frac{2 x^{2}}{x^{3}}-\frac{3 x}{x^{3}}+\frac{5}{x^{3}}}{\frac{x^{3}}{x^{3}}+\frac{6 x}{x^{3}}} \\
& =\lim _{x \rightarrow \infty} \frac{1+\frac{2}{x}-\frac{3}{x^{2}}+\frac{5}{x^{3}}}{1+\frac{6}{x^{2}}} \\
& =\frac{1+\frac{2}{(\infty)}-\frac{3}{(\infty)^{2}}+\frac{5}{(\infty)^{3}}}{1+\frac{6}{(\infty)^{2}}} \\
& =\frac{1+0-0+0}{1+0} \\
& =\frac{1}{1} \\
& =1
\end{aligned}
$$

b) Answer :

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{(x-5)^{2}}{4 x^{2}-13 x} & =\lim _{x \rightarrow-\infty} \frac{x^{2}-10 x+25}{4 x^{2}-13 x} \\
& =\lim _{x \rightarrow-\infty} \frac{\frac{x^{2}}{x^{2}}-\frac{10 x}{x^{2}}+\frac{25}{x^{2}}}{\frac{4 x^{2}}{x^{2}}-\frac{13 x}{x^{2}}} \\
& =\lim _{x \rightarrow-\infty} \frac{1-\frac{10}{x}+\frac{25}{x^{2}}}{4-\frac{13}{x}} \\
& =\frac{1-\frac{10}{(-\infty)}+\frac{25}{(-\infty)^{2}}}{4-\frac{13}{(-\infty)}} \\
& =\frac{1+0+0}{4+0} \\
& =\frac{1}{4}
\end{aligned}
$$

Exercise 2:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \sqrt{\frac{x^{4}-7}{x^{3}+2 x^{2}}} & =\sqrt{\lim _{x \rightarrow \infty} \frac{\frac{x^{4}}{x^{3}}-\frac{7}{x^{3}}}{\frac{x^{3}}{x^{3}}+\frac{2 x^{2}}{x^{3}}}} \\
& =\sqrt{\lim _{x \rightarrow \infty} \frac{x-\frac{7}{x^{3}}}{1+\frac{2}{x}}} \\
& =\sqrt{\frac{(\infty)-\frac{7}{(\infty)^{3}}}{1+\frac{2}{(\infty)}}} \\
& =\sqrt{\frac{(\infty)-0}{1+0}} \\
& =\sqrt{\frac{(\infty)}{1}}
\end{aligned}
$$

Exercise 3 :

a) Answer :

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sqrt{6 x^{2}+9}}{4 x-1} & =\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{6 x^{2}}{x^{2}}}+\sqrt{\frac{9}{x^{2}}}}{\frac{4 x}{x}-\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{6}+\sqrt{\frac{9}{x^{2}}}}{4-\frac{1}{x}} \\
& =\frac{\sqrt{6}+\sqrt{\frac{9}{(\infty)^{2}}}}{4-\frac{1}{(\infty)}} \\
& =\frac{\sqrt{6}+0}{4-0} \\
& =\frac{\sqrt{6}}{4}
\end{aligned}
$$

b) Answer :

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{9 x^{2}+7 x}{\sqrt{9 x^{4}+6}} & =\lim _{x \rightarrow-\infty} \frac{\frac{9 x^{2}}{x^{2}}+\frac{7 x}{x^{2}}}{\sqrt{\frac{9 x^{4}}{x^{4}}}+\sqrt{\frac{6}{x^{4}}}} \\
& =\lim _{x \rightarrow-\infty} \frac{9+\frac{7}{x}}{\sqrt{9}+\sqrt{\frac{6}{x^{4}}}} \\
& =\lim _{x \rightarrow-\infty} \frac{-\left(9+\frac{7}{x}\right)}{\sqrt{9}+\sqrt{\frac{6}{x^{4}}}} \\
& =\frac{-\left[9+\frac{7}{(-\infty)}\right.}{\sqrt{9}+\sqrt{\frac{7}{(-\infty)^{4}}}} \\
& =\frac{-9+0}{\sqrt{9}+0} \\
& =\frac{-9}{3} \\
& =-3
\end{aligned}
$$

There is some special case if $-\infty$

Either numerator or denominator have to put negative (-).

Limit: Trigonometric Function

Theorem a) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

$$
\text { b) } \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0
$$

Exercise 1:

Evaluate $\lim _{x \rightarrow 0} \frac{\sin 4 x}{3 x}$

Exercise 2:

Evaluate the limit : $\lim _{x \rightarrow 0} \frac{\sin 7 x}{3 x(6-2 \cos x)}$

Exercise 3 :

Evaluate $\lim _{x \rightarrow 0} \frac{\tan x}{2 x}$

Exercise 4 :

Evaluate $\lim _{\theta \rightarrow 0} \frac{\sin 6 \theta}{\sin 2 \theta}$

Exercise 5 :

Evaluate the limit : $\lim _{x \rightarrow 0} \frac{x \cos 4 x-\sin 2 x}{3 x}$

Solution:

Exercise 1:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 4 x}{3 x} & =\frac{1}{3} \lim _{x \rightarrow 0} \frac{\sin 4 x}{x} \\
& =\frac{1}{3} \lim _{x \rightarrow 0} \frac{\sin 4 x}{x} \cdot\left[\frac{4}{4}\right] \\
& =\frac{4}{3} \lim _{x \rightarrow 0} \frac{\sin 4 x}{4 x} \\
& =\frac{4}{3}(1) \\
& =\frac{4}{3}
\end{aligned}
$$

Exercise 2:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 7 x}{3 x(6-2 \cos x)} & =\lim _{x \rightarrow 0} \frac{\sin 7 x}{3 x} \times \lim _{x \rightarrow 0} \frac{1}{(6-2 \cos x)} \\
& =\frac{1}{3} \lim _{x \rightarrow 0} \frac{\sin 7 x}{x} \times \lim _{x \rightarrow 0} \frac{1}{(6-2 \cos x)} \\
& =\frac{1}{3} \lim _{x \rightarrow 0} \frac{\sin 7 x}{x} \cdot\left[\frac{7}{7}\right] \times \lim _{x \rightarrow 0} \frac{1}{(6-2 \cos x)} \\
& =\frac{7}{3} \lim _{x \rightarrow 0} \frac{\sin 7 x}{7 x} \times \lim _{x \rightarrow 0} \frac{1}{(6-2 \cos x)} \\
& =\frac{7}{3}(1) \times \frac{1}{(6-2 \cos 0)} \\
& =\frac{7}{3} \times \frac{1}{4} \\
& =\frac{7}{12}
\end{aligned}
$$

Exercise 3 :

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan x}{2 x} & =\lim _{x \rightarrow 0} \frac{\left(\frac{\sin x}{\cos x}\right)}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{\cos x} \cdot \frac{1}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{2 x} \cdot \frac{1}{\cos x} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{2 x} \cdot \lim _{x \rightarrow 0} \frac{1}{\cos x} \\
& =\frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \lim _{x \rightarrow 0} \frac{1}{\cos x} \\
& =\frac{1}{2}(1) \cdot \frac{1}{\cos 0} \\
& =\frac{1}{2}(1) \\
& =\frac{1}{2}
\end{aligned}
$$

Exercise 4 :

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\sin 6 \theta}{\sin 2 \theta}=\lim _{\theta \rightarrow 0} \frac{\sin 6 \theta \cdot\left[\frac{1}{\theta}\right]}{\sin 2 \theta \cdot\left[\frac{1}{\theta}\right]} \\
& =\lim _{\theta \rightarrow 0} \frac{\frac{\sin 6 \theta}{\theta}}{\frac{\sin 2 \theta}{\theta}} \\
& =\frac{\lim _{\theta \rightarrow 0} \frac{\sin 6 \theta}{\theta}}{\lim _{\theta \rightarrow 0} \frac{\sin 2 \theta}{\theta}} \\
& =\frac{\lim _{\theta \rightarrow 0} \frac{\sin 6 \theta}{\theta} \cdot\left[\frac{6}{6}\right]}{\lim _{\theta \rightarrow 0} \frac{\sin 2 \theta}{\theta} \cdot\left[\frac{2}{2}\right]} \\
& =\frac{6 \lim _{\theta \rightarrow 0} \frac{\sin 6 \theta}{6 \theta}}{2 \lim _{\theta \rightarrow 0} \frac{\sin 2 \theta}{2 \theta}} \\
& =\frac{6(1)}{2(1)} \\
& =\frac{6}{2} / 3
\end{aligned}
$$

Exercise 5 :

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x \cos 4 x-\sin 2 x}{3 x} & =\lim _{x \rightarrow 0}\left(\frac{x \cos 4 x}{3 x}-\frac{\sin 2 x}{3 x}\right) \\
& =\lim _{x \rightarrow 0} \frac{\cos 4 x}{3}-\lim _{x \rightarrow 0} \frac{\sin 2 x}{3 x} \\
& =\lim _{x \rightarrow 0} \frac{\cos 4 x}{3}-\frac{1}{3} \lim _{x \rightarrow 0} \frac{\sin 2 x}{x} \\
& =\lim _{x \rightarrow 0} \frac{\cos 4 x}{3}-\frac{1}{3} \lim _{x \rightarrow 0} \frac{\sin 2 x}{x}\left[\frac{2}{2}\right] \\
& =\lim _{x \rightarrow 0} \frac{\cos 4 x}{3}-\frac{2}{3} \lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} \\
& =\frac{\cos 4(0)}{3}-\frac{2}{3}(1) \\
& =\frac{1}{3}-\frac{2}{3} \\
& =-\frac{1}{3}
\end{aligned}
$$

References

Mahat, M. (2022). Interactive Multimedia Calculus Ebook. Aishah Mahat Publisher

Mahat, M. (2022). Questions \& Answers Functions of Two and Three Variables Book 1. Aishah Mahat Publisher

Mahat, M. (2022). Questions \& Answers Functions of Two and Three Variables Book 2. Aishah Mahat Publisher

$$
\begin{aligned}
& -2 Q^{\prime \prime} \quad \int\left(x \pm a^{2}\right) \quad e=2,79 \\
& \sum_{n=Q}^{+\infty} \frac{x^{n}}{n!} \quad \phi=\sqrt{\frac{\sum(x-m)^{2}}{n 1}} \\
& =\cos x+\operatorname{tg} y \sim \sin \alpha \\
& -\frac{3 a}{x} \\
& \frac{\Delta x}{\Delta y}=\lim _{\infty} \frac{\Delta x+2}{\Delta y-1} \\
& 8 x=4-3 y^{2} \\
& =2 x^{2}+3 x \hat{f}^{y} \\
& (x+a)^{2}=x^{2}+2 a x+0 \\
& (x+y)^{2}=\left(\frac{y}{2}\right)^{2} x_{1 / 2}=\frac{b}{\sqrt{x}} \\
& \pi \approx 3,1415 \tan (2 a) \\
& S_{3}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
10 & 1 \\
0 & 1
\end{array}\right] b
\end{aligned}
$$

