Universiti Teknologi MARA

Sign Language Recognition using You Only Look Once-Neural Architecture Search

MUHAMMAD IMRAN BIN NASHARUDIN 2021101813

Thesis submitted is fulfillment of the requirements for Bachelor of Computer Science (Hons.) College of Computing, Informatics and Mathematics

August 2023

ACKNOWLEDGEMENT

Alhamdulillah praises and thanks to Allah because of His Almighty and His utmost blessings, I was able to finish this research within the time duration given. Firstly, my special thanks go to my supervisor, Dr. Raseeda Hamzah for giving me supports and supervised me throughout completing this research to make sure that I delivered an excellent output.

I would also like to give a special thanks to my lecturer, Dr. Raihah Binti Aminuddin for guiding me through two semesters in completing this research and to my examiner, Dr. Ahmad Firdaus Bin Ahmad Fadzil for giving me amounts of useful comments in order for me to correct and strengthen my research. Special appreciation and a thousand thanks also go to my beloved parents and siblings for constantly praying for me, giving me support and encourage me to endure all the stress so that I can finish this research successfully and happily.

A lot of thank also addressed to UITM Kampus Jasin, Melaka, for giving a chance on doing this project to gain knowledge and acknowledgement. Last but not least, I would like to thank all my friends for being understanding and supportive throughout the semester.

ABSTRACT

The American Sign Language (ASL) is a nonverbal communication language that uses visual sign patterns formed with the hands or any part of the body and is usually utilized by persons who have hearing or listening disabilities. The deaf and mute people have difficulty communicating their thoughts, needs, and feelings through spoken language. There is a need to have an alternative method based on computer technology for those who are deafen or hard of hearing people since vocal communication is not available to them. One of the issues of computer-based sign language recognition is latency which creates delay in executing the interpretation of certain gestures. To balance latency vs. throughput, the architecture is discovered automatically using a Neural Architecture Search (NAS) technology called AutoNAC. The innovative features of YOLO-NAS include the quantization aware modules QSP and QCI, which combine re-parameterization for 8-bit quantization to minimize accuracy loss during post-training quantization. The architecture is designed to identify tiny objects, increase localization accuracy, and improve the performance-per-compute ratio, making it appropriate for real-time edge-device applications. As using YOLO-NAS for the sign language recognition, we succeeded to deploy average of detection percentage of 86% of all sign language alphabets. YOLO-NAS networks are successfully used in sign language recognition, with a reported 96.41 (mAP@50).

TABLE OF CONTENT

CONTENTS

PAGE

TABLE OF CONTENT		
LIST OF FIGURES		
LIST OF TABLES		
CHAPTER ONE: INTRODUCTION		
1.1 Backgr	Background of Study	
1.2 Problem	Problem Statement	
1.3 Project	Project Objectives	
1.4 Project Scope		5
1.5 Project Significance		6
1.6 Summa	ry of Project	6
CHAPTER TWO	D: LITERATURE REVIEW	7
2.1 Overvie	ew of Sign Language	8
2.1.1 Language of Sign Language		8
2.1.2 Hearing and Listening Disabilities		9
2.2 Compu	ter Vision	10
2.2.1 Ob	ject Detection Deep Learning	11
2.3 Related Work		12
2.3.1 Real-time Vernacular Sign Language Recognition using MediaPipe Machine Learning		e and 12
2.3.2 Ara	abic Sign Language Recognition using Faster R-CNN	14
2.3.3 Using YOLOv5 Algorithm to Detect and Recognize American Sign Language		n 16
2.4 Algorit	hm used in Object Detection	18
2.4.1 Yo	u Only Look Once version 1 (YOLOv1)	18
2.4.2 Yo	u Only Look Once version 4 (YOLOv4)	19
2.4.3 Yo	u Only Look Once version 5 (YOLOv5)	20
2.4.4 Yo	u Only Look Once version 8 (YOLOv8)	21
2.4.5 Yo	u Only Look Once – Neural Architecture Search (YOLO-NAS)	22
2.4.6 Su	mmary of Selected Algorithm for Proposed System	24
2.5 System	Platform Development	25

2.5	.1	Web Based Application	25
2.6 Summary of Chapter		27	
CHAPTER THREE: METHODOLOGY			28
3.1	Sof	tware Development Methodology	28
3.2 Pro		ject Framework	29
3.3	Pha	ase 1: Requirements Analysis	30
3.3	.1	Information Gathering	30
3.3	.2	Data Collection	30
3.3	.3	Data Pre-processing	31
3.4 Phase 2: System Design		32	
3.4	.1	System Architecture	32
3.4	.2	System Flowchart	35
3.4	.3	Use Case Diagram	37
3.4	.4	User Interface Design	39
3.5 Phase 3: Implementation		41	
3.5	.1	Hardware and Software Requirements	42
3.5	.2	YOLO-NAS development for ASLR	43
3.5	.3	Installing the Packages	45
3.5	.4	Importing all the Required Libraries	46
3.5	.5	Exporting Roboflow Dataset into Google Colab Notebook	48
3.5	.6	Load Dataset Parameters into Dictionary	49
3.5	.7	Pass the values for 'dataset_params'	50
3.5	.8	Instantiating the model	52
3.5	.9	Define Metrics and Training Parameters	53
3.5	.10	Training the model	56
3.5	.11	Evaluation method	58
3.6	Pha	ase 4: Testing	60
3.6	.1	Test Case	61
3.6	.2	Black Box Testing	61
3.7	Pro	ject Timeline	62
3.8 Summary of Chapter		63	
CHAPTER FOUR: RESULT AND DISCUSSION		64	
4.1	An	alysis Requirements of the System	64
4.1.1 Data Requirements		64	
4.2	Sys	stem Design	68