UNIVERSITI TEKNOLOGI MARA

DETECTION OF HARMFUL SUBSTANCES IN UNDERARM PRODUCT USING OPTICAL CHARACTER RECOGNITION AND SUPPORT VECTOR MACHINE

NUR HIDAYAH BINTI ABDUL GHANI

2020872908

BACHELOR OF COMPUTER SCIENCE (Hons.)

AUGUST 2023

ACKNOWLEDGEMENT

Alhmadulillah, praises and thanks to Allah because of His Almighty and His utmost blessings, I was able to finish this research within the time duration given. First and foremost, my special thanks to my supervisor, Dr. Raihah binti Aminuddin who assisted and guided me through these two semesters.

Special appreciation also goes to my beloved parents who gave their support to encourage me for finishing this final year project. Finally, I would like to give my gratitude to my dearest friend and myself. Thank you to all my friends for knowledges and helps they have given and myself for believe that I can complete this task until the end. Also, thank you and bless for those people who have helped me either unintentionally or not.

ABSTRACT

Products for the underarm area which includes deodorant and antiperspirant are vital for maintaining personal hygiene, however some people are worried about how the product itself can affect their health and general wellbeing due to unfamiliar ingredients name on the label. Existing applications that are available for consumer to check safeties of a product frequently require users to create an account, include advertisements or provide unhelpful result. Thus, people manually search up each ingredient of the product using any search engine which is time-consuming. Hence, this study aims to develop a user-friendly system that can quickly and accurately identify harsh chemical substances in underarm products. The system uses Optical Character Recognition (OCR) and Support Vector Machine (SVM) to extract ingredients name and classify the product respectively. This study reveals how well the system classifies underarm product and enable users to make a great choice about the safety of the product. This is due to the accuracy obtained from classifying 120 testing data using Support Vector Machine classifier and achieved 93.4%. In conclusion, the suggested technique offers a potential way to get over the constraints of existing applications, then giving the consumer a quick and reliable way to choose a safe underarm product for everyday use. As for future work, the system database might be expanded with list of chemical compounds in order to detect more harmful substances in the future. Next, various methods of machine learning and OCR tools could be evaluated for improved performance and classification accuracy and text detection respectively in the future research for further improvement.

TABLE OF CONTENTS

CONTENT PAGE SUPERVISOR APPROVAL ii STUDENT DECLARATION iii ACKNOWLEDGEMENT iv ABSTRACT v **TABLE OF CONTENTS** vi LIST OF FIGURES ix LIST OF TABLES xi LIST OF ABBREVIATIONS xii **CHAPTER 1: INTRODUCTION** 1 1.1 Background of Study 1 2 1.2 **Problem Statement** 1.3 **Project Objectives** 4 1.4 Project Scope 4 1.4.1 Target User 4 4 1.4.2 Implementation of The System 1.4.3 Data 5 1.4.4 **Expected Outcome** 5 1.5 **Project Significance** 6 1.6 Conclusion 6 1.7 Outline of Proposal 6 **CHAPTER 2: LITERATURE REVIEW** 8 2.1 Overview of Harmful Ingredient 9 2.2 10 **Image Processing** 2.3 Method in Deep Learning 11

2.3.1	Convolutional Neural Network	12
2.3.2	Recurrent Neural Network	13
2.3.3	Fully Convolutional Network	14
2.4 Ma	chine Learning	15
2.4.1	Supervised Learning	16
2.4.1.1	Support Vector Machine (SVM)	16
2.5 Related Works		17
2.5.1 Rej	Text Detection and Recognition for Images of Medical Laboratory ports with a Deep Learning Approach.	19
2.5.2 EC	A Handwritten Character Recognition from Images Using CNN- OC.	19
2.5.3 Inc	OCR-Based Safety Check System of Packaged Food for Food onvenience Patients.	20
2.6 Fea	ture Analysis on Related Works	21
2.7 Cor	mparative Analysis on Related Works	21
2.8 Sys	stem Platform Development	22
2.8.1	Native Based	22
2.8.2	Web Based	23
2.8.3	Analysis on System Platform	23
2.9 Cha	apter Summary	24
CHAPTER 3: METHODOLOGY		25
3.1 Introduction		25
3.2 Wa	terfall Methodology	25
3.3 Requirement Analysis Phase		28
3.3.1	Use Case Diagram	28
3.3.2	User Interface Design	29
3.4 System Design		31
3.4.1	Data Collection	31
3.4.2	Data Pre-processing	32
3.4.3	Flowchart of the System	32
3.4.4	Algorithm Design	34
3.4.5	Research Design	38
3.5 Development Phase		39
3.5.1	Hardware and Software Requirements	39
3.6 Testing		41