UNIVERSITI TEKNOLOGI MARA

MEDICAL SIGN LANGUAGE TRANSLATOR IN HEALTHCARE FACILITY USING YOLO VERSION 7 ALGORITHM

NURIN QISTINA BINTI ZAINI

2020476616

BACHELOR OF SCIENCE COMPUTER (Hons.)

AUGUST 2023

ACKNOWLEDGEMENT

Alhamdulillah, praises and thanks to Allah because of His Almighty and His utmost blessings, I was able to finish this research within the time duration given. Firstly, special thanks to my supervisor, Madam Nur Nabilah Binti Abu Mangshor for assisting, making recommendations, and encouraging me throughout the production process and the preparing of this report. I also appreciate the effort spent proofreading and fixing my errors. Also, thanks to Dr. Noor Hasimah Ibrahim Teo for guiding us throughout the completion of writing this report.

Special thanks to my beloved parents and Puan and Puan and Puan and my family for their continuous support and understanding when undertaking my research and writing my project. Their prayer for me was what sustained me this far.

Last but not least, to my classmates who have been working together to complete the project, I appreciate and respect all your support and assistance throughout the semester. This project was completed successfully owing to their unending assistance and support. May Allah bless us all.

ABSTRACT

Sign language is a significant tool used by the impairment people as their communication tool. It employs hand articulation, face expression and body movement to convey message. Individuals who are deaf or hard of hearing experience severe communication challenges in health care facilities, restricting their access to healthcare services. In addition, people who work worked at a front desk in healthcare institutions also have a limited knowledge on this sign language. Hence, this creates barrier for these impairment people to do communication in their daily activities, especially when dealing at the healthcare facility. This project purpose is as preliminary to overcome the problem at healthcare institutions to recognize sign language and interpret it into word to let other people understand it. The system will begin to function by receiving real-time input of a sign language image. The YOLOv7 algorithm will process the image by detecting trained images in the input image. If the training image is present in the input, a bounding box with a label that covers the estimated object will be presented. For the recognized sign language gesture, the algorithm creates a bounding box with a label. The hand signs are then translated into words, allowing medical staff to clearly understand the conversation. The model's performance is assessed using accuracy, recall, average precision and F1 score are calculated where the results for mean average precision (0.95%) for all classes are more than 0.9 accuracy and the F1 score for all classes are more than 0.8 accuracy. In the future, the system can be more well developed by using local GPU where the training phase can be done without any restriction and more classes of sign language can be added to make it more convenient to use the system.

TABLE OF CONTENTS

CONTENT	PAGE
SUPERVISOR APPROVAL	i
STUDENT DECLARATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	viii
LIST OF TABLES	xi
LIST OF ABBREVIATIONS	xii

CHAPTER 1: INTRODUCTION

1.1 Project Background	1
1.2 Problem Statement	2
1.3 Project Objective	4
1.4 Project Scope	4
1.5 Project Significant	4

CHAPTER 2: LITERATURE REVIEW

2.1 Overview	6
2.2 Healthcare Facility	7
2.2.1 Clinics	7
2.2.2 Emergency Department	8
2.3 Sign Language	9
2.3.2 Medical Sign Language	12
2.3.1 Malaysia Sign Language	13
2.4 Overview Sign Language Recognition System	13

2.5 Overview of Object Detection	17	
2.6 Overview Deep Learning	17	
2.6.1 YOLO Algorithm	18	
2.6.2 R-CNN	20	
2.7 Related Work	20	
2.8 Conclusion	22	

CHAPTER 3: METHODOLOGY

3.1 Research Framework	25
3.2 Problem Identification	26
3.3 Data Collection	26
3.3.1 Data Pre-processing	28
3.4 Model Design	30
3.5 System Development	31
3.5.1 Hardware requirement	32
3.5.2 Software Requirement	32
3.5.3 System Architecture	32
3.6 Testing	37
3.7 Documentation	38
3.8 Gantt chart	39
3.9 Summary	41

CHAPTER 4: SYSTEM DESIGN AND DEVELOMENT

4.1 Analysis requirement of the system	42
4.1.1 Hardware requirements	42
4.2 System design	45
4.2.1 Diagram of overall process	45
4.2.2 Use case diagram	47
4.2.3 Interface design	48
4.3 System development	48
4.3.1 Flowchart	48
4.4 System implementation	49
4.4.1 Labelimg	50