UNIVERSITI TEKNOLOGI MARA

SINGLE STAGE FOUR QUADRANT DIRECT CONTROL OF AN AC FED DC MACHINE USING SINGLE PHASE MATRIX CONVERTER

NUR HIDAYAH BINTI ABDULLAH

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Electrical Engineering)

College of Engineering

January 2023

ABSTRACT

The technological revolution in transportation whether on land, at sea, or in the air – has reached the stage of electrification. This revolution has indicated a rise in demand in recent years for a power supply system. The typical converters to control fourquadrant operation of a permanent magnet DC motor requires at least two separate circuits including the integration of current wave shaping supply technology to ensure high power factor operation. The use of at least two separate converters circuits contributes to the increase in the number of semiconductor devices, which leads to their bulky size, high power semiconductor losses and low power density. Therefore, this thesis proposes a new model of single-stage direct control of DC machines fed with AC voltage sources using a single-phase matrix converter (SPMC). The proposed system uses a single-circuit topology to perform four-quadrant control operations and is verified from their voltage and current profiles, which include quadrant I, quadrant II, quadrant III, and quadrant IV. Besides enabling four-quadrant control operations, supply current wave shaping control to provide almost unity power factor operation has also been implemented by integrating the SPMC with the active power filter function resulting in low total harmonic distortion (THD) level and high-power density. Analysis and MATLAB simulations results and experimental test-rig proved that single-stage of SPMC in four-quadrants operations can enhance power density, reduce THD level and improve power factor.

ACKNOWLEDGEMENT

The completion of this project could not have been possible without the opportunity given by God and the assistance of many others, who assisted me in so many ways throughout my research journey.

My sincere gratitude and thanks go to my supervisor, Ir. Ts Dr. Rahimi Baharom, and my co-supervisor, Dr. Khairul Safuan, for their mentoring, support, guidance, and encouragement throughout the accomplishment of my research work.

I am grateful to many people in Faculty of Electrical Engineering who have assisted me in the course of this work.

My gratitude is also due to all my colleagues, especially from power electronics research group for aid, ideas, and advice during my study at Universiti Teknologi MARA.

Finally, heartful thanks to my parents, to whom I owe everything in my life, and to my brothers and sisters who had given me moral support and prayed for my success.

TABLE OF CONTENTS

CON	FIRMATION BY PANEL OF EXAMINERS	ii			
AUT	HOR'S DECLARATION	iii			
ABS	TRACT	iv			
ACK	ACKNOWLEDGEMENT				
TABLE OF CONTENTS					
LIST	T OF TABLES	xi			
LIST	C OF FIGURES	xii			
LIST	T OF SYMBOLS	xviii			
LIST	COF ABBREVIATIONS	XX			
СНА	PTER ONE INTRODUCTION	22			
1.1	Introduction	22			
1.2	The Need for High Power Density AC-DC Converter for the Control of H	Four-			
	Quadrant Permanent Magnet DC Motor	25			
1.3	Problem Statement	25			
1.4	Research Objectives				
1.5	Research Questions 2				
1.6	Scope of Research 2				
1.7	Significance of this Study 2				
1.8	Structure of the Thesis				
СНА	PTER TWO A REVIEW ON POWER ELECTRONIC CONVERTERS	30			
2.1	Introduction	30			
2.2	Power Electronic Converters				
	2.2.1 AC-DC Converters or Rectifiers	30			
2.3	Switch Cell	31			
	2.3.1 Bipolar Junction Transistor (BJT)	32			
	2.3.2 Fully Controllable Bidirectional Switch Configurations	34			

2.4	Four-Quadrant Operation		
2.5	Dual Converter	36	
2.6	Control Technique	38	
	2.6.1 Pulse Width Modulation (PWM)	38	
	2.6.2 Sinusoidal Pulse Width Modulation (SPWM)	38	
	2.6.3 Active Pulse Width Modulation (APWM)	39	
2.7	Power Quality Problems	39	
	2.7.1 Harmonics	39	
	2.7.2 Possible Solutions to Associated Problems	40	
2.8	Matrix Converter		
2.9	Single-Phase Matrix Converter (SPMC)		
2.10	Switch Cell Topologies		
2.11	Commutation Problem		
2.12	Safe-Commutation Techniques		
2.13	Control Methods		
2.14	Conclusion		

CHAPTER THREE PROPOSED SINGLE-STAGE DIRECT CONTROL OF DC MACHINES FED AC VOLTAGE SOURCE USING SINGLE-PHASE MATRIX CONVERTER 46

3.1	Introduction			
3.2	Single-Phase Matrix Converter Circuit			
3.3	Contro	olled AC-DC Operation	47	
	3.3.1	Switching Techniques	48	
	3.3.2	Control Implementation	49	
	3.3.3	Safe-Commutation Technique	51	
	3.3.4	Rectifier with a Non-linear Load	58	
	3.3.5	Active Power Filter (APF) Function	58	
3.4	Contro	olled Four-Quadrant Operations	64	
	3.4.1	Quadrant I Operation	66	
	3.4.2	Quadrant II Operation	67	
	3.4.3	Quadrant III operation	76	
	3.4.4	Quadrant IV operation	84	