UNIVERSITI TEKNOLOGI MARA

SYNTHETIC APPROACH TOWARDS ANTI-INFLAMMATORY AGENT, DAIBUCARBOLINE A AND ITS DERIVATIVES VIA TETRAHYDROβ-CARBOLINE INTERMEDIATES

NUR AIN NABILAH BINTI ASH'ARI

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Chemistry)

Faculty of Applied Sciences

February 2023

ABSTRACT

β-Carbolines, belonging to the class of indole alkaloids, were isolated from wild Syrian rue (Peganum harmala), which is common in Iran. Over the past few decades, the synthesis of β -carbolines has elicited much interest due to its wide pharmaceutical and biological applications. For instance, one of their many derivatives, the daibucarboline A 1, is proved to demonstrate interesting anti-inflammatory activity upon tested using iNOS assay with the IC₅₀ value of 18.41 µM. However, literature survey reveals there is no report found on the synthesis of daibucarboline A 1 in addition to limited works on its isolated compound. Thus, we described herein the synthetic approach towards daibucarboline A 1 and its derivatives by using different substituted indoles and aldehydes/glyoxal. The first part is the chemical studies towards the intermediates and derivatives of daibucarboline A 1 using tryptamine 29 as the starting material with different substituted benzaldehydes 30-42 to afford a series of key 1-substituted tetrahydro-β-carboline intermediates 43-55 in 20-95 % yields. Subsequent removal of hydrogens to promote aromatization of the intermediates via oxidative dehydrogenation reaction, mediated by I_2 and H_2O_2 furnished the aromatized β -carboline **56-60** in 42-83 % yield. Having β -carboline **56-60** in hand, the reaction proceeded with the insertion of methyl substituent on N-1 position of the indole moiety in the presence of NaH and alkylating agent, CH₃I via N-alkylation to afford N-methylated derivatives 61 and 62 in 43-58 %. The second part is the chemical studies towards the intermediates and derivatives of daibucarboline A 1 using 5-hydroxy-L-tryptophan 63 as the starting material with different substituted phenylglyoxals 64-69 to furnished derivative 72-76 via Pictet-Spengler cyclization. The reaction proceeded with the reduction of carbonyl functionality via Wolff-Kishner reduction using hydrazine hydrate and KOH to furnish derivatives 80-84 in moderate yields of 38-56 %. Fischer esterification and carbonyl reduction were also attempted on starting material 63 to give derivatives 77 and 78 respectively. In the final step, subsequent conversion of derivative 84 to an ether derivative 85 was achieved *via* Williamson ether synthesis in 61 % yield. The essential derivative 85 towards daibucarboline A was successfully synthesized in four steps with an overall yield of 3.4 %. The third part is the screening of anti-inflammatory activities of daibucarboline A and its derivatives using xanthine oxidase inhibitory assay. At the concentration of 100 µg/mL, 27 compounds showed anti-inflammatory activities against xanthine oxidase, ranging from weak to moderate inhibitory effect. Compounds 58, 72, 74, 75, 81 and 83 were found to moderately inhibit the production of xanthine oxidase with compound **81** showed the highest inhibitory effect of 63.17 % inhibition. The structures of all synthesized intermediates and derivatives of β -carboline were confirmed by NMR, FTIR and GC-MS spectroscopy.

ACKNOWLEDGEMENT

As with any piece of research that results in the production of a thesis, on the cover there should be not only the name of the researcher, but also the names of all those unsung heroes, those who to varying degrees provided assistance, encouragement and guidance, and without whom I would not succeeded. I am very grateful to all those people, who have given so much of their time, love and energy, just to ensure I survived this journey until the end.

Foremost, I would like to express my deepest appreciation to my supervisor, Dr. Noor Hidayah binti Pungot for the continuous support throughout my study, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better supervisor and mentor for my master's study.

My sincere thanks also goes to both of my co-supervisors, Prof Dr. Zurina Shaameri and Dr. Norakmalazura Jani for their encouragement, insightful comments and for providing me the answers to all difficult questions I had in mind.

I would like to express sincere gratitude to Prof. Ahmad Sazali Hamzah, who has the attitude and the substance of a genius; he continually and convincingly conveyed a spirit of adventure in regard to research, and an excitement in regard to teaching. Without his guidance and persistent help, this thesis would not have been possible.

A thousand thanks to all the staff of Institute of Science especially Dr. Mohd. Fazli Mohammat, one of my entrusted go-to references whenever failure hits me, Pn. Zaleha Afandi, Pn Afreeda Firdaus and Kak Fatin Nur Ain Abdul Rashid for providing facilities, assistance and advice, making my difficult days bearable.

I thank my fellow labmates: Munirah, Zahir, Umar, Ummu, Tasnim, Zul, Lee and Ayisy for the stimulating discussions, the sleepless nights we were working together before deadlines, the gloomy and teary days of exhaustion, and for all the fun we had in the last two years. I truly indebted for all the kindness.

And to my parents and siblings, nothing could describe how thankful I am for all the continuous support spiritually and emotionally. Your constant prayers were what sustained me this far. This thesis is dedicated to all of you, my biggest supporters.

I would like to acknowledge the Ministry of Higher Education as well as Universiti Teknologi MARA for the financial support and opportunity for me to pursue my master's degree. Most of all, I am very grateful to Allah for giving me the strength and patience to overcome all difficulties and challenges. Alhamdulillah.

TABLE OF CONTENTS

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	x
LIST OF ABBREVIATIONS	xi

CHAPTER ONE: INTRODUCTION 1					
1.1	Plant Secondary Metabolites as Core Structures in Natural Product				
1.2	Indole Alkaloids				
1.3	Indole Heterocycle with β -carboline Ring System				
1.4	Discovery of Daibucarboline A				
1.5	Synthetic Outline to the Synthesis of Daibucarboline A Derivatives				
1.6	Research Problem				
1.7	Significance of the Research				
1.8	Objectives of the Research				
CHAPTER TWO: LITERATURE REVIEW					
2.1	Total Synthesis of Daibucarboline A Derivatives				
	2.1.1	Synthesis of Eudistomin I	8		
	2.1.2	Synthesis of Lavendamycin	10		
	2.1.3	Synthesis of Luzongerine A	13		
2.2	Biological Significance of β -carboline Derivatives				
	2.2.1	Anti-inflammatory property	15		
	2.2.2	Cytotoxicity	18		

	CHAP	TER TH	HREE: EXPERIMENTAL	15
	3.1	Genera	l Experimental Procedures	15
		3.1.1	Purification of Reagents, Compounds and Solvents	16
		3.1.2	Preparation of Glassware	16
		3.1.3	Melting Points	17
		3.1.4	Infrared Spectra (IR)	20
		3.1.5	Gas-Chromatography Mass Spectroscopy (GCMS)	20
		3.1.6	Nuclear Magnetic resonance (NMR)	20
		3.1.7	Biological Assay – Anti-inflammatory Activity	21
	3.2	Individ	ual Experimental Procedures	23
		3.2.1	Synthesis of Tetrahydro-β-Carboline Intermediates	23
		3.2.2	Oxidative Dehydrogenation Reaction	36
		3.2.3	N-Alkylation Reaction	41
		3.2.4	Synthesis of 1-Substituted β -Carbolines via Pictet-Spengler Condensation	43
		3.2.5	Wolff-Kishner Reduction	53
		3.2.6	Fisher Esterication Reaction	58
		3.2.7	Carbonyl Reduction Reaction using LiAlH ₄	59
		3.2.8	Williamson Ether Synthesis	60
	3.3	3.3 Anti-inflammatory Assessment		
				62
CHAPTER FOUR: RESULTS AND DISCUSSION				
4.1 Studies Towards the Synthesis of Daibucarboline A using Tryptamine Benzaldehydes				ited 62
		4.1.1	Synthesis of Key Tetrahydro- β -Carboline Intermediates <i>via</i> Pictet-Speng Condensation	gler 62
		4.1.2	Synthesis of β -Carboline Framework <i>via</i> Oxidative Dehydrogenation	70
		4.1.3	<i>N</i> -Alkylation of β -Carboline Derivatives	76
4.2 Studies Towards the Synthesis of Daibucarboline A using 5-hydroxy-L Substituted Phenylglyoxals			Towards the Synthesis of Daibucarboline A using 5-hydroxy-L-tryptophan w uted Phenylglyoxals	vith 80
		4.2.1	Synthesis of β -Carboline Frameworks <i>via</i> Pictet-Spengler Condensation	80
		4.2.2	Methyl Ester Protection of Carboxyl Group	90
		4.2.3	Reduction of Carboxyl Functionality to Alcohol	93
		4.2.4	Carbonyl Reduction via Wolff-Kishner Reduction	96
		4.2.5	Formation of Ether Derivatives via Williamson Ether Synthesis	100