UNIVERSITI TEKNOLOGI MARA

ANXIOLYTIC EFFECTS OF ETHANOLIC EXTRACT OF MORINGA OLEIFERA LEAVES IN CHRONICALLY STRESSED DANIO RERIO

MUHAMMAD SHAZLY BIN ROSDY

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Biology)

Faculty of Applied Science

February 2023

ABSTRACT

Medicinal properties of *Moringa oleifera* are vast which include anti-microbial, antiinflammatory, anti-convulsant, anti-oxidant and anti-anxiety. As the number of mental disorders cases have been increasing over the years, and the drugs available in market face significant challenges due to their side effects, it is of a dire need to identify natural plants that are potential stress relievers. This study was designed to determine the potential of ethanolic extract of *M. oleifera* leaves (MOLE) as an anxiolytic agent using zebrafish. The changes in the behaviour and metabolite profiles and the related metabolic pathways in response to MOLE treatment were studied. A chronic unpredictable stress model was used to induce anxiety in zebrafish for 14 days. Anxiety was measured using an open field tank and a light/dark tank. Three doses of MOLE (500, 1000 and 2000 mg/L) were administered to the zebrafish. Fluoxetine was used as the positive control. Upon sacrifice, the brains were extracted for LC-MS/OTOF based metabolomics analysis. The changes in the metabolite profiles and the related anxiety pathway in response to MOLE were studied. MOLE improved the anxiety behaviour such as swimming zone preference, and increased duration in the upper zone and light zone by the zebrafish. Distinctive metabolite profiles were observed in zebrafish with different treatments. Pathways analysis using Metaboanalyst software had identified several pathways which shed light on the mechanisms of actions of the anxiolytic effect of MOLE. MOLE reduce anxiety effects by regulating the metabolism of purine, glutathione, arginine and proline, D-glutamine and D-glutamate. These findings can be used for further research to identify compounds of interest that are potentially good therapeutics and serve as an alternative therapy for anxiety disorder.

ACKNOWLEDGEMENT

Firstly, I wish to thank Allah for allowing me to embark on my postgrad study and for completing this long and challenging journey successfully. My gratitude and thanks go to the director of Integrative Pharmacogenomics Institute (iPROMISE), Prof. Dato' Dr. Mohd Zaki Bin Salleh, my supervisor, Prof. Dr. Teh Lay Kek and my co-supervisor, Dr. Nurdiana Samsulrizal for their patience, motivation, enthusiasm and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis. Thank you for the support, patience and ideas in assisting me with this project.

I would like to thank the administrative and technical staff members of the iPROMISE who have been kind enough to advise and help in their respective roles.

Finally, this thesis is dedicated to my beloved father, Rosdy Bin Rosli and to my beloved mother, for supporting me financially and emotionally throughout the journey. This piece of victory is dedicated to both of you. Alhamdulillah. Not to forget, I would like to thanks to all my friends for helping and be there for me throughout my master journey, including Nur Ameera, Faris, Faiq, Syahril and many more.

TABLE OF CONTENTS

Page

CON	ii			
AUT	iii			
ABS	iv			
ACH	v			
TAE	vi			
LIST	X			
LIST	xi			
LIST	Г OF SY	MBOLS	xiii	
LIST	Г OF AI	BBREVIATIONS	xiv	
CHA	APTER	ONE INTRODUCTION	1	
1.1	Backg	ground of Study	1	
1.2	Proble	em Statement	2	
1.3	Objec	ctives	2	
1.4	Signif	ficance of Study	3	
CHA	APTER '	TWO LITERATURE REVIEW	4	
2.1	Menta	Mental Health		
	2.1.1	Anxiety Disorders	4	
	2.1.2	Current Treatment for Anxiety Disorders	7	
2.2	Herba	11		
	2.2.1	Introduction to Moringa oleifera sp.	12	
	2.2.2	Characteristics of Moringa oleifera	13	
	2.2.3	Benefits of Moringa oleifera in Health	14	
2.3	Anim	18		
	2.3.1	Introduction to Danio rerio sp.	19	
	2.3.2	Applications of Zebrafish in Research	22	
2.4	Chror	nic Unpredictable Stress in Zebrafish	24	

	2.4.1	Open Field Swimming Behaviour	26
	2.4.2	Light/dark Swimming Behaviour	26
	2.4.3	Immobile	27
2.5	Metab	27	
	2.5.1	Metabolomic Strategies	28
	2.5.2	Metabolomics for Mental Disorders	30
	2.5.3	Principal Component Analysis	33
	2.5.4	Pathway Analysis	33
СНА	PTER 7	THREE RESEARCH METHODOLOGY	35
3.1	Resea	urch Workflow	35
3.2	Chem	icals and Materials	37
3.3	Plant Material		
3.4	Exper	38	
	3.4.1	Ethical Approval	38
	3.4.2	Animal Experiment and Husbandry	38
	3.4.3	Selection of Fit Zebrafish	38
	3.4.4	Determination of LC ₅₀ of MOLE in Zebrafish	39
3.5	Behav	39	
	3.5.1	Setup of Experiment	39
	3.5.2	Stressor	40
	3.5.3	Preparation of Extract and Drug	40
	3.5.4	Chronic Unpredictable Stress Model	41
3.6	Metab	42	
	3.6.1	Plant Extract Profiling	42
	3.6.2	Zebrafish Brain Extraction	42
	3.6.3	Setup for LCMS/QTOF	43
	3.6.4	Sample Preparation for LCMS/QTOF	43
	3.6.5	Batch Quality Control	43
3.7	Data A	44	
	3.7.1	Behaviour Study Analysis	44
	3.7.2	Metabolomic Study Analysis	45
3.8	Statistical Analysis		