UNIVERSITI TEKNOLOGI MARA

ADSORPTION STUDIES ON CROSSLINKED CHITOSAN/EGGSHELL/TITANIA FOR METHYL ORANGE REMOVAL

NUR NABILAH BINTI NUSRI

Thesis submitted in fulfilment of the requirements for the degree of Master of Science (Chemistry)

Faculty of Applied Sciences

June 2023

ABSTRACT

Adsorption is the most efficient method for treating dye-contaminated wastewater. One of the widely available natural polymers, chitosan, is a promising adsorbent. However, raw chitosan has disadvantages including a low surface area and poor chemical stability in an acidic media, which hinder its adsorption efficiency. Therefore, chitosan must be modified before being used as an adsorbent. In the present study, chitosan was modified physically and chemically and then applied for the adsorption of methyl orange dye. The chitosan flakes were successfully converted to chitosan beads using eggshell and titania for physical modification. These modifications were conducted to improve the chitosan surface property and adsorptive performance. The chitosan beads were then chemically modified with crosslinkers; benzaldehyde, salicylaldehyde, and benzil to increase their stability in the acidic solution. The optimum crosslinker was selected via potentiometric titration analysis, swelling and dissolution studies, and the adsorption performance of methyl orange (MO) removal, with benzaldehyde exhibits the most optimum properties. The physicochemical properties of the prepared adsorbents were characterized via XRD, BET, FTIR, and FESEM-EDX. The effects of pH, initial dye concentration, and adsorbent dosage on the adsorption performance of adsorbents were investigated. The percentage removal of MO decreases with increasing pH and MO concentrations. In contrast, the MO removal efficiency increases as adsorbent dose increases. The optimum conditions were 150 minutes, 0.3 g adsorbent dose, and pH 4 for crosslinked Chitosan/2Eggshell/1Titania-Benzaldehyde (CS/2ES/1TiO2-BAL). The adsorption data were assessed using equilibrium adsorption isotherms and kinetics models. The Langmuir isotherm model significantly described the isotherm data due to higher correlation coefficients ($R^2 = 0.99$), with a maximum adsorption capacity of 4.49 mg/g. Thus, the applicability of monolayer coverage of the MO on the surface of the CS/2ES/1TiO2-BAL is demonstrated. The kinetic study revealed that the pseudo-firstorder rate model better agreed with the experimental data. In conclusion, this study has demonstrated the potential of CS/2ES/1TiO2-BAL as an adsorbent for treating dye contaminated water.

ACKNOWLEDGEMENT

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis. Above all, I would like to thank Associate Professor Dr. Lim Ying Chin, my principal supervisor, for her help, support, and guidance throughout the study. Special appreciation also goes to my co-supervisor, Dr. Muhd Firdaus Kasim and Assoc. Prof. Dr. Ali H. Jawad Al-Taie for their guidance and knowledge regarding this topic.

I want to acknowledge the Universiti Teknologi MARA (UiTM) Shah Alam, especially the Faculty of Applied Sciences, for providing all equipment and facilities. This gratitude also goes to Electrochemical Material and Sensor (EMaS) group. I am also thankful to the dedicated laboratory staffs Mr. Dzahir Dzaidanee Nasaruddin, Mr. Muhamad Faizal Omar, and Miss. Nurfarah Farini Muhamad Kamarazzaman for their assistance.

I also would like to thank The Ministry of Higher Education (Malaysia) for supporting MyBrainSC scholars financially. Finally, sincere thanks and appreciation go to my parents '. and Mrs. , for their prayers, unconditional support, encouragement, and understanding. To those who indirectly contributed to this research, your kindness means a lot to me.

TABLE OF CONTENTS

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENTS	vi
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	XV
CHAPTER 1 INTRODUCTION	1
11 Descend Deskenson d	1

1.1	Research Background			1
1.2	Problem Statement			7
1.3	Research Objectives			8
1.4	Significance of Study			8
1.5	Scope	of	Research	9

CHA	PTER 2 LITER	ATURE REVIE	W		10
2.1	Introduction				
2.2	Dye Chemistry				10
	2.2.1 Methyl	Orange			12
2.3	Toxicity	Effects	of	Dyes	13
2.4	Classification of Dye		14		
2.5	Methods	of	Dye	Removal	16
2.6	Adsorption				18
	2.6.1 Mechan	ism of Adsorption	1		19
	2.6.2 Types o	f Adsorptions			19
	2.6.2.1	Physisorption			20
	2.6.2.2	Chemisorption			20

2.7	Adsorbent				
	2.7.1	Activated Carbon	21		
	2.7.2	Clay	22		
	2.7.3	Chitosan	22		
		2.7.3.1 Chitosan Beads	24		
2.8	Chitos	san Crosslinking	25		
	2.8.1	Chitosan Schiff Base	26		
	2.8.2	Crosslinking with Benzil	26		
	2.8.3	Crosslinking with Benzaldehyde	27		
	2.8.4	Crosslinking with Salicylaldehyde	28		
2.9	Adsor	bent-based Chitosan Materials	29		
	2.9.1	Combination of Metal Oxides	29		
		2.9.1.1 Incorporation of Titania	30		
	2.9.2	Incorporation of Waste Materials	31		
		2.9.2.1 Incorporation of Eggshell	31		
2.10	Factor	s Affecting Dye Adsorption	32		
	2.10.1	pH of Solution	32		
	2.10.2	2 Initial Dye Concentration	33		
	2.10.3	Adsorbent Dose	34		
CHA	PTER 3	3 RESEARCH METHODOLOGY	36		
3.1	Mater	ials	36		
3.2	Resear	rch Flow	36		
3.3	Exper	Experimental Procedure			
	3.3.1	Preparation of Eggshell Powder and Its Treatment	38		
	3.3.2	Preparation of Eggshell:Titania Composites in			
		Chitosan/Eggshell/Titania	38		
	3.3.3	Varying Crosslinkers of Crosslinked Chitosan/Eggshell/Titania	39		
3.4	Sorba	te of Methyl Orange	40		
3.5	Adsor	ption Study by Crosslinked Chitosan/Eggshell/Titania	41		
	3.5.1	Effect of Solution pH	42		
	3.5.2	Effect of Initial Dye Concentration	42		
	3.5.3	Effect of Adsorbent Dosage	42		
3.6	Adsor	ption Isotherm	43		
		vii			