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 For ages, researchers have conducted numerous studies exploring 
every aspect of problems related to univalent functions. Most of the 
research has been concentrated on investigating the diverse 
properties of univalent functions.  Notably, finding the upper bound of 
Hankel determinants has become an intriguing problem among 
researchers in this field. The aim of this paper is to solve on the second 
Hankel determinant problem for the class ( )k zβ

C  of close-to-convex 

functions related with the certain generalized starlike functions. We 
first give the definition of the class ( )k zβ

C  and use certain preliminary 

lemmas to achieve on the main goal of this research. The finding of 
this research generalizes certain results related to the second Hankel 
determinant of other classes of close-to-convex functions.  
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1. Introduction 
Let Α denote the class of analytic functions normalized by ( ) ( )0 0 1 0f f ′= − =  in the unit disc 

{ }: 1 .z z= ∈ <U= Functions f ∈A  has the Taylor series expression of the form 
 

( )
2

n
n

n
f z z a z

∞

=

= + ∑  (1) 

where na is the coefficient of f. Now, let Σ be the subclass of Α consists of functions f which are 

univalent in Υ. Also, let ΣΤ , Κ and Χ be the subclasses of Σ containing functions f  which represent 

the class of starlike functions, convex functions  and close-to-convex functions respectively. The 

class ΣΤ , Κ and Χ are defined as follows. 
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Definition 1.1 [1] Let f be given by (1). Then f ∈ STb if and only if  
 

( )
( )

Re 0, .
zf z

z
f z

′   > ∈ 
  

U  

 
Definition 1.2 [1] Let f be given by (1). Then f ∈ Kb if and only if  
 

( )( )
( )

Re 0, .
zf z

z
f z

 ′′  > ∈ ′  

U  

Definition 1.3 [1] Let f be given by (1). Then f ∈ Cb if there exist the function ( )g z ∈ STb  and a real 
number ( )2, 2β π π∈ −  such that    

 ( )
( )

Re 0, .i zf z
e z

g z
β ′   > ∈ 

  
U  (2) 

 The most important example of a function in the Σ is the Koebe function given by 

( )

2

2
1

1 1( ) 1 .
4 11

n

n

z zk z nz
zz

∞

=

 +  = = − = −  −  
∑  

This function plays a crucial role, as it is pivotal in numerous findings concerning univalent functions.   
 
Noonan and Thomas [2] defined the qth Hankel determinant of f ∈ S= for positive integers n and q by 
 

( )

1 1

1 2 2

1 2 2 1

( )

n n n q

n n n q
q

n q n q n q

a a a

a a a
H n

a a a

+ + −

+ + + −

+ − + − + −

=





   



. 

Easily, we can see that for the case 2n =  and 2q =  we have  

( ) 22 3
2 2 4 3

3 4
2

a a
H a a a

a a
= = −  

known as the second Hankel determinant.  
 

The study on the second Hankel determinant, that is finding the upper bound of the functional 
2

2 4 3a a a−  of f ∈ S began since 1960. Many studies have been conducted to solve the problem of 

finding the upper bound of 2
2 4 3a a a−  for various subclasses of Σ (see, for examples [3] [4] [5], [6] 

[7], [8], [9], [10], [11], [12]).  Particularly, for f ∈ Cb satisfying (2) with certain functions ( )g z  and value 

,β Janteng et al. [13] obtained 2
2 4 3

4
9

a a a− ≤ , Soh and Mohammad [14] obtained 2
2 4 3

13 ,
36

a a a− ≤

Mehrok et al. [15] obtained 2
2 4 3

73
72

a a a− ≤  and Ullah et al.  [16] obtained 2
2 4 3

1
36

a a a− ≤ . 
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 Inspired by the previous study, our objective in this paper is to establish the upper bound of 
the functional 2

2 4 3a a a−  for the subclass of f ∈ Cb with respect to generalized Koebe function, 

( )k zα
C  defined as follows. 

Definition 1.4  Let f ∈ S= be given by (1). Then ( )k zf
β

∈ C  if and only if for 0 2,β≤ ≤ there exist 

( )
( )1

zk z
z

β β= ∈
−

ST such that 

( )
( )

Re 0,  .
zf z

z
k zβ

 ′  > ∈ 
  

U  

 
To prove on the main theorem of this paper, we give some preliminaries results related to the class 
of function whose real parts are positive in Υ 
.  
 
 
2. Preliminaries 
 
Let Π denote the class of analytic functions ( )p z  whose real part are positive in Υ normalized by 

( )0 1p =  and satisfying ( )Re 0.p z >  All functions ∈p P  has the form 
 

 
( )

1
1 .n

n
n

p z c z
∞

=

= + ∑  (3) 

 
Lemma 2.1. [17] 
Let ∈p P be analytic functions in Υ given by (3). Then the sharp inequality 2nc ≤  hold for all 

1n ≥ . Equality occurs for the function ( ) 1 .
1

zp z
z

+
=

−
  

Lemma 2.2. [18] 
Let ∈p P be analytic functions in Υ given by (3). Then,  

( )2 2
2 1 12 4c c x c= + −  

for some x, 1x ≤   and  

( ) ( ) ( )( )23 2 2 2 2
3 1 1 1 1 1 14 2 4 4 2 4 1c c c c x c c x c x z= + − − − + − −  

for some z, 1z ≤ . 
 

 
 

3. Results and Discussion 
 
To achieve on the main result for this paper, we first find the coefficients 2 3,  a a and 4a  by relating 
the ( )k zf

β
∈ C  with ∈ .p P . Then, we apply Lemma 2.1 and Lemma 2.2 to establish on the upper 

bound of 2
2 4 3a a a−  for the class ( )k zβ

C . 
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Theorem 1 
If ( )f z  given by (1) is in the class ( )k zβ

C , then  

( ) ( )
( )2 22

2 2 3 4
2 4 3 2

2 30 12 6 1801 49 432 6 .
144 486 936 7 9 18

a a a
β β β β βββ β β β

β β

− − − + +
− ≤ − + + − − − +

− −
 

Proof. 
 
From definition 1.4, we see that ( )k zf

β
∈ C  if and only if there exist ∈p P  such that 

 
( )1'( )

(1 )
f z p z

z β

 
=  

− 
 (4) 

 
where, ( )f z′  were obtained from the series given by (1), ( )p z  is the series given by (3) and  

2 2 3 2 31 1 1 1 1 11
2 2 6 2 3(1 )

z z z
z β β β β β β β   = + + + + + + +   −    

 . 

Now, by comparing the coefficients in (4), we have 
 

( )2 1
1
2

a cβ= + , 

2
3 1 2

1 1 1
3 2 2

a c cβ β β = + + + 
 

, 

and 
3 2 2

4 1 2 3
1 1 1 1 1 1
4 6 2 3 2 2

a c c cβ β β β β β
  = + + + + + +  

  
. 

Then, the application of the triangle inequality gives 

 
β β β− ≤ − + + + +2 4 3 2

2 4 3
1 1 12

144 72 144
a a a A B  (5) 

where, 
( ) ( )β β β β β β= − + + + − +3 2 2

1 2 32 3 8 9A c c c  

and  
( )β β β= − + − + −2 2 2

1 1 2 1 3 27 9 14 18 16 .B c c c c c c  

Next, to establish the upper bound of 2
2 4 3 ,a a a−  we first, seek the upper bound of A  and B  using 

the following approach.            
 
Let =1 ,c c  1xη = ≤  and applying Lemma 2.1 and Lemma 2.2 along with the triangle inequality we 
obtain 
 

( ) ( )
( ) ( ) ( )( ) ( )

( ) ( )

3 2 2
1 2 3

3 2 2 3 2 2 2 2 2

2 2 2

2 3 8 9 ,

9 1 1 9    8 2 3 8 9 4 4
4 2 2 4

9 9       4 4 ,
2 2

A c c c

c c c c c c c

c c

β β β β β β

β β β β β β β β β η β η

β η β

= − + + + − +

≤ + − + − + + + − + − + −

− − + −
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( ) ( )( ) ( )

( ) ( ) ( )

2 2 2 2 3 2 2

3 2 2

9 9 1 9 14 8 9 4 8
4 2 2 4 2

9   2 3 4 , , .
2

c c c c c c

c c F c

β β η β β β η β β β

β β β β β η

 ≤ − − + − + − + + − 
 

+ − + + + − =

                        

For 1η ≤ , we obtain 

( ) ( ) ( )3 3 2 29, , , ,1 2 30 2 16 .
2

F c F c c cβ η β β β β β β β≤ = − + − + + + −  

The application of derivatives test with respect to c, for [ ]0,2c ∈ and [ ]0,2 ,β ∈  we obtain that, the 

maximum of ( ), ,1F cβ  occur at 21 180 6 12 .
9

c β β= + −  Hence, 

 ( )2 24 27 2 30 180 6 12 108 .
27 2

A β β β β β β ≤ − − − + − −  
 (6) 

 
Next, we seek the bound for B  by using the same approach as seeking the bound for |A|. Replacing
x υ=  we have, 

 
           ( )2 2 2

1 1 2 1 3 27 9 14 18 16B c c c c c cβ β= − + − + −  

( ) ( )( )

( ) ( )

2 2 2 2 2 2

2 2 2

1 7 7 9 9 4 7 4
2

1    9 16 4 , ,
2

c c c c c c c c

c c c G c

β β β β υ

υ β υ

 ≤ − + + − + − + − − 
 
 + − + − = 
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where for 1υ ≤ , 

( ) ( ) ( )2 2, , , ,1 7 9 18 28 64G c G c c cβ υ β β β β≤ = − − + +  

and for [ ]0,2c ∈ and [ ]0,2 ,β ∈  the maximum of ( ), ,1G cβ  occur at 
2

14 .
7 9 18

c
β β

= −
− −

 Thus, we 

have, 
 

2
19664

7 9 18
B

β β
≤ −

− −
 (7) 

 
Now, applying (6) and (7) into (5), we obtain 

( ) ( )
( )2 22

2 2 3 4
2 4 3 2

2 30 12 6 1801 49 432 6
144 486 936 7 9 18

a a a
β β β β βββ β β β

β β

− − − + +
− ≤ − + + − − − +

− −
 

as required. This completes the proof of Theorem 1. 
 
Corollary 3.1 

By setting 0β = , we get the same results 1
2 2

c
a = , 2

3 ,
3
c

a = 3
4 4

c
a =  and 2

2 4 3
4
9

a a a− ≤  which were 

earlier obtained in [13]. 
 

 
 

4. Conclusion 
This study focuses on finding the upper bound for the functional − 2

2 4 3a a a  of the class 

( )β
.k zC The objective of this study was achieved by applying Lemma 2.1 and Lemma 2.2. The result 

obtained can be reduced to the class studied by [13], as given in Corollary 3.1. Additionally, from 
Theorem 1  for β = 1 and β = 2 , we can obtain new results of second Hankel determinant for the 

class ( )1k zC and ( )2k zC  satisfying the conditions ( ) ( ){ }′− >Re 1 0z f z  and ( ) ( ){ }′− >2Re 1 0z f z  
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respectively. Future studies are suggested to further generalized the class ( )βk zC  such that the 

results obtained can be reduced to many subclasses studied by previous researchers. Furthermore, 
further studies could be conducted to solve other problems such as finding the third Hankel 
determinant and logarithmic coefficients for the class ( )β

.k zC  
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