UNIVERSITI TEKNOLOGI MARA

MIXED IONIC ELECTRONIC CONDUCTING PEROVSKITES OXYGEN TRANSPORT MEMBRANE ON ALUMINA HOLLOW FIBRE SUBSTRATES FOR OXYGEN ENRICHMENT

'AINUN SAILAH BINTI SIHAR

MSc

MAY 2019

UNIVERSITI TEKNOLOGI MARA

MIXED IONIC ELECTRONIC CONDUCTING PEROVSKITES OXYGEN TRANSPORT MEMBRANE ON ALUMINA HOLLOW FIBRE SUBSTRATES FOR OXYGEN ENRICHMENT

'AINUN SAILAH BINTI SIHAR

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Chemical Engineering)

Faculty of Chemical Engineering

May 2019

ABSTRACT

Currently, large scale of oxygen production for air separation unit (ASU) in carbon capture storage (CCS) is carried out using cryogenic distillation. It is a mature technology but has several drawbacks such as energy extensive and high operational cost due to very low temperature and high pressure operating conditions. Therefore, this thesis focuses on the fabrication of mixed ionic electronic conducting (MIEC) perovskite oxygen transport membrane (OTM) on alumina hollow fibre substrate for production of oxygen from air. One of the main advantages of using perovskite-based membrane is their unique characteristic that only allows oxygen to pass through at temperature higher than 600 °C, leading to an infinite selectivity of oxygen to other gas species. A series of MIEC perovskites; SrCo_{0.8}Fe_{0.2}O_{3-δ} (SCF), La_{0.6}Sr_{0.4}Co_{0.8}Fe_{0.2}O_{3-δ} (LSCF) and La_{0.6}Sr_{0.4}Co_{0.2}Ni_{0.8}O_{3-δ} (LSCNi) were prepared using Pechini sol-gel method and characterized using thermogravimetric analyzer (TGA), X-ray diffractometer (XRD) and Brunauer-Emmett-Teller (B.E.T.) surface area analyzer. Their oxygen adsorption/desorption properties were then investigated as a function of time and temperatures. It was found that the optimum oxygen sorption capacity and the best operating temperature for all MIEC perovskites were between 700 to 800 °C. LSCNi oxide was found able to adsorb the highest amount of oxygen, followed by LSCF and SCF during the oxygen-temperature programmed desorption (O₂-TPD) analysis. Thus, LSCF and LSCNi were selected for the development of MIEC OTM for further O₂ enrichment study. The alumina hollow fibre (AHF) was fabricated using phase-inversion and sintering process to obtain porous substrates. The effect of sintering temperature (1350 °C and 1450 °C) toward the porosity and mechanical strength were then investigated. 1450 AHF which refer to fibre sintered at 1450 °C was found to have better mechanical strength without sacrificing the porosity and thus was used as a substrates for OTM fabrication. The MIEC perovskite sol was deposited onto AHF using vacuum assisted technique and the viscosity of sol was carefully controlled to obtain a homogeneous and very thin coated perovskite. The physical and morphology of the prepared membranes were then characterized by using 3-point bending test, scanning electron microscope (SEM) and energy dispersive X-ray (EDX) prior to O₂ enrichment study. It was found that the oxygen flux increases when higher operating temperature and sweep gas flowrate were tested. LSCNi-AHF exhibits a maximum oxygen flux of 4.47 mL/cm².min at 950 °C; 150 mL/min as compared to LSCF-AHF (0.44 mL/cm².min). It can be concluded that the fabrication of MIEC perovskites OTM on alumina hollow fibre substrates were successfully prepared in this work. The performance of the OTMs were improved significantly owing to the new MIEC materials (LSCNi oxide) and microporous properties of alumina hollow fibre substrates.

ACKNOWLEDGEMENT

Thanks to Allah S.W.T., The Almighty God that this thesis is finally well written and submitted. I have taken my full efforts in this research project to be successfully conducted. However, it would not have been possible without the kind support and help of many individuals. I would like to extend my sincere thanks to all of them.

Firstly, I wish to thank God for giving me the opportunity to embark on my MSc and for completing this long and challenging journey. My gratitude and thanks go to my beloved and supportive main supervisor Dr. Nur Hidayati Othman (UiTM) and co-supervisor Dr. Mukhlis A. Rahman (UTM).

My appreciation also goes to lab assistants and assistant engineers of Faculty of Chemical Engineering, UiTM Shah Alam for providing splendid assistance during this research project was conducted. Special thanks to all my fellow postgraduates and friends for helping me with this project. Not to forget, I also wish to express my thankfulness to those fellow postgraduates and researchers in Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia (UTM) who directly and indirectly assisting me in this membrane field.

Finally, this thesis is dedicated to my father, and my mother, for their vision and never ending determination to educate and support me since I was kid up until now. This piece of victory is dedicated to both of you! Alhamdulillah.

TABLE OF CONTENTS

CONFIRMATION BY PANEL OF EXAMINERS			ii
AUTHOR'S DECLARATION			iii
ABSTRACT ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF ABBREVIATIONS			iv
			v
			vi
			ix
			Х
			ii
			iii
LIST OF NOMENCLATURES			vi
CHA	PTER	ONE: INTRODUCTION	1
1.1	Resea	rch Background	1
1.2	Problem Statement		3
1.3	Objective of Study		4
1.4	Scopes of Study		5
СНА	PTER	FWO: LITERATURE REVIEW	7
2.1	Production of Oxygen		7
	2.1.1	The Uses of Oxygen	7
	2.1.2	Technologies for Oxygen Production	10
2.2	Membrane Technology		14
	2.2.1	Types of Membrane	14
	2.2.2	Fabrication of Ceramic Membrane	19
	2.2.3	Membrane Application for Oxygen Separation	24
2.3	Mixed Ionic Electronic Conducting (MIEC) Perovskites		25
	2.3.1	MIEC Perovskite-type	26
	2.3.2	Preparation of MIEC Perovskites	29
	2.3.3	Application of MIEC Perovskites	30